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Abstract—Optical data center networks (DCNs) are becoming
increasingly attractive due to their technological strengths com-
pared to traditional electrical networks. However, prior optical
DCNs are either hard to scale, vulnerable to single point of
failure, or provide limited network bisection bandwidth for many
practical DCN workloads.

To this end, we present WaveCube, a scalable, fault-tolerant,
high-performance optical DCN architecture. To scale, WaveCube
removes MEMS1, a potential bottleneck, from its design. Wave-
Cube is fault-tolerant since it does not have single point of failure
and there are multiple node-disjoint parallel paths between
any pair of Top-of-Rack (ToR) switches. WaveCube delivers
high performance by exploiting multi-pathing and dynamic link
bandwidth along the path. Our extensive evaluation results show
that WaveCube outperforms previous optical DCNs by up to
400% and delivers network bisection bandwidth that is 70%-
85% of an ideal non-blocking network under both realistic and
synthetic traffic patterns. WaveCube’s performance degrades
gracefully under failures—it drops 20% even with 20% links cut.
WaveCube also holds promise in practice—its wiring complexity
is orders of magnitude lower than Fattree, BCube and c-Through
at large scale, and its power consumption is 35% of them.

I. INTRODUCTION

Nowadays, data centers are being built around the world

to support various big data applications and cloud services.

As a result, the community has been investigating new DCN

structures with the goal to better meet the bandwidth require-

ment of these applications. The representative DCN designs

include pure electrical structures (e.g., BCube [17], DCell [18],

Fattree [7], PortLand [22], VL2 [16], CamCube [6], and Jel-

lyfish [25]) and optical/electrical structures (e.g., Helios [15],

c-Through [27], OSA [12], and Mordia [23]). However, all

these existing DCN designs have important drawbacks.

A. Motivation and Related Work

Electrical DCNs: Initially, people statically provision high

capacity between all servers using sophisticated topologies like

Fattree [7], BCube [17], and VL2 [16] with pure electrical

devices. While this seems to be the only way to prevent any

communication bottleneck assuming arbitrary traffic, it suffers

from significant wiring challenge and management complexity.

Furthermore, full bisection bandwidth at the scale of the entire

DCN is not necessary given that not so many applications

require uniform high bandwidth at this scale [15]. This leads

to a dilemma: the network must be fully provisioned against

1Micro-Electro-Mechanical-System—one of the most popular optical cir-
cuit switches used as the main component by recent optical DCNs [12, 15, 27].

Optical DCNs Scalability (port-count) Performance Fault-tolerance

c-Through [27]
Helios [15]

Low (∼1000) Low No

OSA [12] Low (∼2000) High No
Mordia [23] Low (∼88) High No
WaveCube High (unlimited) High Yes

TABLE I
SUMMARY OF PRIOR OPTICAL DCNS AND COMPARISON TO WAVECUBE.

any localized congestion despite the fact that, at any time,

certain parts of network are rarely used or even sit idle.

Optical DCNs: To solve the dilemma, optical networking

technologies, due to their ability to dynamically provision high

bandwidth resources across the network, have been introduced

in recent optical DCNs such as c-Through [27], Helios [15],

OSA [12], and Mordia [23]. Most of them leverage MEMS-

based optical switches to dynamically set up optical circuits

for bandwidth demanding parts of the network. While making

significant contributions in pointing out a promising avenue

for building DCNs, these existing optical DCN designs suffer

from the following issues (summarized in Table I).

• Scalability. MEMS is the central switch to connect all

ToR switches, the low port density of MEMS limits the

scalability2. A natural way to scale is to interconnect

multiple MEMSes in the form of multi-stage fattree [27].

Unfortunately, as we will show in Section II, the properties

of MEMS make it (both technically and economically) hard

to scale optical DCNs in this way. Practical and economic

scaling of optical DCNs remains a challenge.

• Performance. c-Through/Helios dynamically set up single-

hop optical circuits between ToRs on-demand with low

fan-in/out, which greatly restricts their performance when

hotspots occur in high fan-in/out, a common pattern in

production DCN workloads [19, 21]. OSA solves this

problem by multi-hop routing on a k-regular topology (each

ToR connects k other ToRs). But there is a tradeoff between

k and network scale.

• Fault-tolerance. c-Through/Helios/OSA have all ToRs con-

nect to a core MEMS, creating a single point of failure3.

Mordia [23] resides on a ring, any link cut will break the

ring and affect the connectivity.

Motivated by this situation, our goal is to design a scalable,

fault-tolerant and high performance optical DCN architecture

2While Mordia does not have MEMS constraint, it is limited by wavelength
channel contention and supports 88 ports on a single ring [23].

3We refer to physical structure reliability. Regarding the logical central
controller, it can be replicated to multiple physical servers.



(Table I). To the best of our knowledge, prior optical DCNs

do not achieve all these properties simultaneously.

B. Our Approach and Contributions

Given that MEMS is the bottleneck for scalability and

it is hard to interconnect multiple MEMSes to scale, we

take the contrary approach: instead of adding more MEMSes,

we completely remove it from our design. Without MEMS,

the network can easily scale. As a side-effect, however, we

lose the dynamic topology. But this gives us a chance to

develop advanced routing mechanisms which otherwise cannot

be easily achieved in a dynamic topology.

Our idea in WaveCube is to use multi-path routing and dy-

namic link bandwidth scheduling on each path to compensate

the loss of not having dynamic topology, while achieving s-

calability. Furthermore, after removing MEMS, fault-tolerance

can be obtained since we eliminate the single point of failure.

This paper makes the following contributions:

• We design WaveCube, a MEMS-free optical DCN archi-

tecture that achieves scalability, fault-tolerance, and high-

performance simultaneously (Section III). More specifically,

WaveCube easily scales to hundreds of thousands of servers.

It delivers high performance and fault-tolerance by exploit-

ing multi-pathing and dynamic link bandwidth on each

path—it outperforms previous optical DCNs by up to 400%
and delivers network bisection bandwidth that is 70%-85%
of a non-blocking network on both realistic and synthetic

traffic patterns; its performance degrades gracefully in case

of failures—a 20% drop even with 20% links cut.

• By exploiting WaveCube topology properties, we develop a

polynomial-time optimal solution to wavelength assignment

for dynamic link bandwidth (Section IV).

• We inspect practical deployment issues of WaveCube, and

show that it holds promise in practice (Section VI). For

example, using a practical model, we find that WaveCube

is easy to build—its wiring complexity is 2-3 orders of

magnitude simpler than Fattree/BCube and 1 order simpler

than c-Through at large scale. Furthermore, it incurs low

cost and consumes least power of all.

It is worthwhile to mention that WaveCube achieves all the

properties without requiring any advanced, expensive optical

devices beyond what are used by existing optical DCNs [12,

15, 23, 27]. Our strategy is to better orchestrate them to realize

our aims. We have presented a hardware feasibility analysis

for implementing WaveCube, however, building a non-trivial,

fully functional WaveCube prototype is our next step effort

and is beyond the scope of this paper. Our hope is that the

design, analysis, and extensive simulations conducted in this

paper will pave the way for the next step of prototyping.

Roadmap: Section II introduces the background. Section III

presents WaveCube in detail. Section IV introduces wave-

length assignment algorithms. Section V evaluates WaveCube.

Section VI discusses practical deployment issues and hardware

feasibility of WaveCube. Section VII concludes the paper.

Fig. 1. An example of 2-stage MEMS structure.

II. BACKGROUND AND PROBLEMS

A. Optical Networking Technologies in DCNs

Optical networking technologies have been extensively in-

troduced in optical DCNs [12, 15, 23, 27]. We overview the

main devices and their properties. For more details, please

refer to those papers.

MEMS-based Optical Switch: MEMS works on the physical

layer. It is a bipartite N×N circuit switching matrix, which

allows any input port to be connected to any one of the output

ports by mechanically rotating micro-mirrors. The switching

time of MEMS is around 10 milliseconds [26].

Wavelength Selective Switch (WSS): A WSS unit is a 1×N
optical device for wavelength de-multiplexing. It has one

common incoming port and N outgoing ports. It can divide

all the wavelengths from the common incoming port into N
groups, with each group going via an outgoing port. The WSS

is run-time reconfigurable (around 10 milliseconds).

Wavelength Division Multiplexing (WDM): WDM encodes

multiple non-conflicting wavelengths onto a single fiber. De-

pending on the channel spacing, up to 100 wavelengths can

be carried on a fiber in the conventional or C-band. In optical

DCNs, a wavelength is usually rate-limited by the port of the

electrical switch it is connected to, e.g., 10Gbps.

Others: There are other optical devices such as circulator,

transceiver, coupler, etc. Circulator enables bidirectional trans-

mission over a fiber so that MEMS ports can be used efficient-

ly. Transceiver converts between electrical and optical signals

on ToR switches. Coupler multiplexes multiple wavelengths

onto a fiber (similar but simpler than multiplexer).

B. Problem Analysis with Multi-stage MEMSes

The low port density of MEMS (i.e., 320 in practice or

1000 in Labs) is the bottleneck of scalability. A seemingly

natural way to scale is to interconnect multiple MEMSes in

the form of multi-stage fattree [27]. However, we show that

such a multi-stage MEMS structure has fundamental problems.

First, MEMS switch only allows pairwise, bipartite connec-

tion between its ports. This makes MEMS chain less efficient.

Figure 1 is an example of 2-stage MEMS structure. Even with

such dense connectivity, due to pairwise circuit inside each

MEMS, only one connection can be established between a top

MEMS and a bottom MEMS at a time. For example, when

we set up a circuit between port 1 of MEMS-00 and port 5

of MEMS-11 (blue), no other connection is allowed between

MEMS-00 and MEMS-11 any more (red).

Second, multi-stage MEMSes incur significant cost. For in-

stance, each MEMS port costs $500 [15] and every additional

320-port MEMS costs additional $160, 000. Further, such a



Fig. 2. The WaveCube architecture.

MEMS chain wastes lots of expensive optical ports purely for

interconnection purpose.

Third, multi-stage MEMS structure poses challenge for fast

coordinated circuit switching and increases signal loss at every

stage. It is known that MEMS has ∼10ms switching latency.

The synchronization of multiple MEMSes in a dense structure

will cause additional switching latency. Hence, ongoing flows,

especially those latency-sensitive ones, may get unacceptably

delayed during reconfiguration.

Given the above problems with multi-stage MEMSes, we

exploit an opposite direction. Instead of adding more MEM-

Ses, we completely remove it. In what follows, we present

the design and evaluation of WaveCube, a MEMS-free optical

DCN that trades dynamic topology for scalability and fault-

tolerance, while still conserving network performance via

multi-pathing and dynamic link bandwidth scheduling.

III. THE WAVECUBE ARCHITECTURE

In this section, we present the WaveCube architecture. We

first introduce its topology, multi-pathing and dynamic link

bandwidth. Then, we show how to use multi-pathing and

dynamic link bandwidth for network performance.

A. WaveCube Topology

In WaveCube (Figure 2), servers are connected to ToRs,

and ToRs are directly connected to each other via optical

components which provide dynamic link bandwidth between

ToRs (Section III-C). There is no aggregate or core layers. At

ToR level, it is a n-dimensional cube where the ith dimension

has ki ToRs in a loop, i.e., a (kn−1, kn−2, · · · , k0)-radix

topology.4 In our design, we assume every ki is even.

Each ToR has an address array A = (an−1, an−2, · · · , a0),
where ai ∈ [0, ki − 1]. The distance between two ToRs A
and B, which we call WaveCube distance, is DW (A,B) =∑n−1

i=0 ω(ai−bi), where ω(ai−bi) = min{|ai−bi|, ki−|ai−
bi|}. For example, in Figure 2, where n = 2 and k0 = k1 = 4,

DW ((1, 1), (3, 0)) = 2 + 1 = 3. Two ToRs A and B are

4Essentially, WaveCube is a generalized k-ary-n-cube [13] with variable
radices. CamCube [6] used a k-ary-n-cube, 3D Torus, for its server-centric
network topology. However, WaveCube is switch-centric and, more impor-
tantly, the link bandwidth of WaveCube can be dynamically adjusted.

neighbors in WaveCube if and only if DW (A,B) = 1. In

other words, their address arrays only differ in one dimension,

and only differ by 1 (mod ki).
Lemma 1: A WaveCube network is composed of

∏n−1
i=0 ki

ToRs and n
∏n−1

i=0 ki ToR links.

Lemma 2: The diameter of a WaveCube network (i.e., the

longest shortest path between all ToR pairs) is
∑n−1

i=0
ki

2 .

Scalable topology: Lemma 1 and Lemma 2 indicate that a k-

ary-n-cube WaveCube contains N = kn ToRs and its diameter

is nk
2 = n

n√
N

2 =
k logN

k

2 , which shows that WaveCube diameter

scales nicely with the number of ToRs. The total number of

optical links scales linearly with and is always n times the

number of ToRs. For example, using a 4-ary-8-dimensional

WaveCube, 65,536 ToRs can be connected into a DCN whose

diameter is 16, accommodating 2,097,152 servers (assuming

32 servers per ToR).

Centralized control: Note that WaveCube employs a central

controller to manage the network, such as fault-tolerant rout-

ing, bandwidth scheduling, etc. This is inspired by many other

DCN designs [11, 12, 15]–[17, 22, 27, 29].

B. Multi-pathing

Node-disjoint paths between two ToRs provide a means of

selecting alternate routes and increase fault-tolerance. Wave-

Cube provides high fault-tolerance as it contains 2n node-

disjoint paths between every pair of ToRs, which is maximum

since every ToR is only connected to 2n neighbor ToRs.

Theorem 1: WaveCube contains 2n node-disjoint paths be-

tween every pair of ToRs.

Proof: For space limitation, we omit the details. Note that

our proof is inspired by [14] on regular k-ary-n-cube topology,

and we applied similar approach to WaveCube with variable

radix on each dimension. As a result, the 2n node-disjoint

paths in WaveCube have different lengths from that in [14].

Interested readers please refer to [14].

WaveCube’s 2n node-disjoint paths are necessary for high-

performance routing, load-balancing, and fault-tolerance.

C. Dynamic Link Bandwidth

Over the 2n multi-paths, WaveCube enables dynamic link

bandwidth on each path by using WSS (e.g., 1×K). Take

ToR11 in Figure 2 for example, as a sender, all wavelengths

from ToR are multiplexed onto a single fiber by MUX to feed

WSS. Then, WSS divides these wavelengths into K groups,

each group goes to another ToR through one of the K outgoing

ports. The number of wavelengths in a group amounts to

the bandwidth of that ToR-to-ToR link. For example, if the

WSS incoming port receives 40 wavelengths, it can route

wavelengths 1–5 to outgoing port 1, 11–20 to port 2, 22–30

to port 3 etc. Then, links 1, 2, 3 are assigned 5, 10, 9 units of

bandwidth (i.e., 50Gbps, 100Gbps, 60Gbps if each ToR port

is 10Gbps), respectively.

As a receiver, K groups of wavelengths from K other ToRs

will be transmitted to Coupler through the 3-way Circulators,

then the Coupler multiplexes all these wavelengths to a single



fiber to feed DEMUX, and finally the DEMUX de-multiplexes

all the wavelengths to their corresponding ports on ToR.

However, wavelength contention requires that the same

wavelength cannot be assigned to a ToR link twice simul-

taneously. This is because all the wavelengths from/to a ToR
will share the same single fiber of MUX-to-WSS/Coupler-to-
DEMUX. This poses a challenge to fully use the property

of dynamic link bandwidth, since non-contention wavelength

assignment is NP-hard and has not been solved in prior optical

DCN [12]. In Section IV, we will introduce an optimal wave-

length assignment algorithm by taking advantage of WaveCube

topology properties.

It is worthwhile to note that WaveCube’s use of WSS is

inspired by OSA [12], but significantly improves by designing

the optimal wavelength assignment and optimized wavelength

adjustment algorithms (Section IV).

D. Optimization with above two properties

To optimize network performance using multi-pathing and

dynamic link bandwidth, we schedule flows over multi-paths

and then dynamically adjust link bandwidth to fit the traffic.

Flow scheduling: For an incoming flow, we need to choose,

among 2n parallel paths, one path to route the flow. There

are many methods to use, such as random, round-robin,

ECMP, etc. Recent work, such as Hedera [8], also introduced

advanced DCN flow scheduling. However, WaveCube does

not require advanced (high-overhead) flow scheduling, since

it has dynamic link bandwidth. We just distribute traffic

among multiple paths randomly, and then dynamically allocate

link bandwidth to handle possible congestion resulted from

unbalanced flow scheduling. Our evaluation results show that

this simple method works well.

Bandwidth scheduling: The goal of link bandwidth schedul-

ing is to find a link bandwidth assignment φ such that link

utilization is optimized. Here, link utilization is defined as
τ(u,v)
cφ(u,v)

, where τ(u, v) is the traffic volume on link (u, v),

and cφ(u, v) is the bandwidth assigned by φ to link (u, v).
Given a traffic matrix T, we define an optimal bandwidth

assignment as an assignment φ that minimizes the maximum

link utilization. For that, we define a variable yφ, which rep-

resents the reciprocal of the maximum link utilization, given

by min(u,v)∈E{ cφ(u,v)
τ(u,v) }. The bandwidth scheduling problem

is formulated as the following linear program.

Objective : max
φ

yφ
(1)

Subject to : yφ ≤ cφ(u, v)

τ(u, v)
, ∀φ, ∀(u, v) ∈ E (2)

∑

v∈V

cφ(u, v) ≤ C, ∀u ∈ V (3)

cφ(u, v) ∈ R+, ∀(u, v) ∈ E (4)

The objective (1) specifies the goal of maximizing yφ, which

is equivalent to minimizing the maximum link utilization.

Constraint (2) states the correctness requirement that, in any

feasible assignment φ, yφ should be less than or equal to the

reciprocal of the link utilization
τ(u,v)
cφ(u,v)

of any link (u, v).

Notation Meaning

G = (V,E) WaveCube ToR level topology graph
φ bandwidth demand on E, computed in Section III-D

G′ = (V,E′) multigraph representation of G = (V,E, φ)
λ wavelength assignment on E′, that satisfies bandwidth demand φ

Gr = (V,Er) regular multigraph extended from G′, Er=E′ + dummy edges

TABLE II
SOME KEY NOTATIONS USED IN SECTION IV.

Fig. 3. Example of multigraph construction.

Constraint (3) shows that the total bandwidth assigned to the

links incident to a node cannot exceed the node’s capacity.

Here, link bandwidth is denoted by the number of wavelengths

on the link, which is a positive integer. Constraint (4) relaxes

an integer to be a real number, which we will round back to

an integer later. As shown in Table III, this linear program can

be efficiently solved with GLPK.

IV. WAVELENGTH ASSIGNMENT

After computing a bandwidth assignment φ, we need phys-

ically assign wavelengths to each link that is equal to the

desired bandwidth of that link. In this section, we study two

key problems for wavelength assignment.

• Wavelength assignment: What is the minimal number of

wavelengths to implement φ?

• Wavelength adjustment: How to optimize wavelength ad-

justment during bandwidth re-assignment?

A. Optimal Wavelength Assignment

In WaveCube (Figure 2), each ToR up-port is bound to a

fixed unique wavelength, and the wavelengths for all ToRs

are the same. Furthermore, due to wavelength contention

introduced above, the same wavelength cannot be assigned

to a ToR link twice simultaneously. Given a φ, we have to

assign non-conflicting wavelengths to satisfy φ.

Problem 1. Optimal Wavelength Assignment (OWA): Giv-
en a WaveCube graph G = (V,E, φ) where φ is a link
bandwidth assignment on E, find a non-conflicting wavelength
assignment λ on E to satisfy φ, such that the number of
wavelengths used is minimized.

In G = (V,E, φ), each node in V is a ToR, each edge in

E is a ToR link, and φ specifies the bandwidth demand on

each link. Figure 3 (left) is an example of G with bandwidth

demand specified. We translate it to a multigraph G′ = (V,E′)
(right), so that the number of edges between two ToRs in G′

is equal to the bandwidth demand between them in G. Then,

satisfying φ with the minimal non-conflicting wavelengths is

equivalent to an edge-coloring solution [1] on the multigraph,

where each color represents a distinct wavelength and no two

adjacent edges share the same color.

However, the edge coloring problem on a general multi-

graph G′ is NP-complete [1], and the minimal number of

colors needed in an edge coloring χ(G′) ∈ [Δ(G′),Δ(G′) +



Fig. 4. An example of topology transformation.

μ(G′)], where Δ(G′) is the maximum node degree of G′ and

μ(G′) is the multiplicity (i.e., the maximum number of edges

in any bundle of parallel edges).

This poses a challenge as Δ(G′) equals to the total number

of wavelengths available, while by theory it is possible to

require as many as Δ(G′)+μ(G′) = 2Δ(G′) in order to fully

satisfy φ. This problem has not been solved in prior work [12].

WaveCube solves the problem by designing a polynomial-time

optimal wavelength assignment algorithm that takes advantage

of the WaveCube topology properties.

Theorem 2: For a WaveCube graph G = (V,E, φ), we

can always provision φ (without contention) using Δ(G′)
wavelengths.

It is clear that at least Δ(G′) wavelengths are needed to

provision φ. Theorem 2 guarantees that we can always use this

minimum number of Δ(G′) wavelengths to provision φ. We

prove Theorem 2 by finding an edge-coloring solution on G′

with Δ(G′) colors (i.e., wavelengths). This is a daunting goal

since it is NP-hard on general topologies [1, 12]. However,

WaveCube is designed in such a way that its topology is guar-

anteed to be bipartite, for which an elegant polynomial-time

algorithm can be found for optimal wavelength assignment.

Proof: To show its bipartite nature, we randomly select

a node and mark it “black”, and then starting from this black

node, we mark all its neighbors “white”. Then, for each

white (or black) node, we mark its neighbors black (or white)

iteratively until all the nodes are covered. Since in WaveCube,

each radix ki (0 ≤ i ≤ n − 1) is even, this procedure will

converge. We then put all black nodes in one group and white

nodes in another. This apparently is a bipartite graph since all

the edges are between these two groups. Figure 4 illustrates

an example of topology transformation.

We next theoretically prove this. We show how nodes in

G (and G′) can be partitioned into two sets, say V1 and

V2, so that every pair of neighboring nodes in WaveCube

must go to different sets and hence edges in WaveCube

exist across V1 and V2 only. To prove that, for each node

u = (an−1, an−2, · · · , a0), if
∑n−1

i=0 ai is even, we put u in

V1 and otherwise V2.

In WaveCube, two neighbors u = (an−1, an−2, · · · , a0) and

v = (bn−1, bn−2, · · · , b0) differ on exactly one dimension, say

dimension t, and we can assume without loss of generality that

bt = (at + 1) mod kt. Since kt is even, if at is odd, bt must

be even; if at is even, bt must be odd. Therefore, if
∑n−1

i=0 ai
is odd,

∑n−1
i=0 bi must be even; if

∑n−1
i=0 ai is even,

∑n−1
i=0 bi

must be odd. This proves that u and v must go to different

sets. Hence, G (as well as G′) is a bipartite graph.

Given G′ is a bipartite graph, a polynomial-time algorithm

Decomposition(Gr): /* decompose Gr into Δ(Gr) perfect matchings */
1 if (d = 1)
2 return M = Gr ; /* Gr itself is a perfect matching */
3 else
4 if (d is odd)
5 M = Find Perfect Matching(Gr);
6 Gr = Gr \M ;
7 find all Euler cycles in Gr , and pick every other edge on each cycle

to form two �d/2�-regular graphs: G1 and G2;
8 return M ∪ Decomposition(G1) ∪ Decomposition(G2);
Find Perfect Matching(Gr): /* find a perfect matching M in Gr */
9 Initialization: ∀e ∈ Er , let w(e) = 1; M = Er ; /* w is edge weight */
10 while (M contains a cycle C)
11 pick every other edge in C to form 2 matchings M1,M2 such that

w(M1) ≥ w(M2);
12 ∀e ∈ M1, w(e) + +; ∀e ∈ M2, w(e)−−;
13 M = {e|e ∈ Er && w(e) > 0};
14 return M ;

Fig. 5. Find Δ(Gr) perfect matchings that form Gr .

for coloring G′ with Δ(G′) colors comprises 3 steps: 1) We

augment bipartite graph G′ into a Δ(G′)-regular bipartite

graph Gr by adding dummy edges (Δ(Gr) = Δ(G′)). A

Δ(G′)-regular bipartite graph is a bipartite graph where the

degree of every node is Δ(G′); 2) Partition the edges in Δ(Gr)
into Δ(G′) perfect matchings via Decomposition() (described

in Figure 5); 3) Assign a distinct color to each perfect

matching, and G′ is therein colored by Δ(G′) colors (without

wavelength conflict). Proof of Theorem 2 is completed.

In the 3 steps of coloring G′, Decomposition() is critical.

It finds Δ(Gr) perfect matchings in Gr in a divide-and-

conquer manner. Its correctness is guaranteed by the fact that

“any k-regular bipartite graph has a perfect matching” [24].

Given this, we can extract one perfect matching from the

original graph, the residual graph is (Δ(Gr)−1)-regular; then

we extract the second perfect matching, etc, until ending up

with Δ(Gr) perfect matchings. Find Perfect Matching() is a

procedure to find a perfect matching in a regular bipartite

graph we learned from previous work.

B. Optimized Wavelength Adjustment

Traffic may change and link bandwidth needs adjustment

to better fit traffic. Once bandwidth demand φ changes, we

need to re-assign wavelengths to satisfy new φ accordingly. A

naive approach is to assign wavelengths from scratch without

considering the old assignment. However, given that shifting

a wavelength from one WSS port to another incurs ∼10ms

latency, wavelength re-assignment should shift minimal wave-

lengths. This minimizes the disruption of ongoing traffic

especially those latency-sensitive flows.

Problem 2. Minimal Wavelength Adjustment (MWA):
Given a WaveCube topology G = (V,E), the old bandwidth

distribution φo, the old wavelength distribution λo satisfying

φo, and the new bandwidth demand φn, find a wavelength

assignment λn satisfying φn such that, from λo→λn, the

shifting of wavelengths is minimal.

We formulated MWA problem as a 0-1 integer linear

program, and proved it is NP-hard. We then design a heuris-

tic algorithm in Figure 6. The basic idea is to use the

old wavelength distribution λo={m1,m2, · · · ,mΔ} to assist

the decomposition of new multigraph G′
n into Δ matchings



Wavelength Adjustment(G′
o = (V,E′

o), G
′
n = (V,E′

n)):
/* G′

o is multigraph representation of G = (V,E, φo), and G′
n is

multigraph representation of G = (V,E, φn) */
1 let λo = {m1,m2, · · · ,mΔ}; /* mi (color ci) is a matching in G′

o */
2 let λn = {}; d = Δ; Vmax = {v | degree(v) = d};
3 foreach mi ∈ λo: /* use λo to assist the decomposition of G′

n */
4 m = {e | e ∈ mi && e ∈ E′

n};
5 if (m covers all nodes in Vmax)
6 λn = λn ∪ {m}; E′

n = E′
n \m; d−−;

7 d = d− 1; Vmax = {v | degree(v) = d};
8 else
9 V ′ = {v | v ∈ Vmax && v is not associated with m};
10 if (∃ a matching m′ ⊆ E′

n covers V ′ && m ∩m′ = ∅)
11 m = m ∪m′; /* a matching in G′

n that covers Vmax; */
12 λn = λn ∪ {m}; E′

n = E′
n \m;

13 d = d− 1; Vmax = {v | degree(v) = d};
14 if (d > 0) /* not all Δ matchings are found from above */
15 find the rest d matchings using Figure 5 algorithm and put them into

λn; /* suppose now λn = {m′
1,m

′
2, · · · ,m′

Δ} */
16 return Color Assignment(λo, λn);

Color Assignment(λo, λn): /* given λo, find a color assignment to λn to
maximize the common colors on common edges between λo and λn */
17 λo = {m1,m2, · · · ,mΔ}; /* mi has color ci */
18 λn = {m′

1,m
′
2, · · · ,m′

Δ};
19 build cost matrix Cij = {cij |cij = |mi ∩m′

j |};

20 let Xij = {xij |xij = {0, 1},∑i xij = 1,
∑

j xij = 1};

21 maximize CX using Hungarian [2] algorithm;
22 return Xij ; /* xij = 1 means assigning ci (color of mi) to m′

j */

Fig. 6. A heuristic algorithm of MWA problem.

λn={m′
1,m

′
2, · · · ,m′

Δ}, and then assign colors to λn to

maximize overlap between λn and λo (Hungarian [2]).

Specifically, in lines 3-13, using each of the old matchings

mi as a reference, we try to find a new matching m in G′
n

that has as many overlap edges with mi as possible. It is

worthwhile to note that in lines 5 and 11, we require that the

new matching found must cover all the maximum degree nodes

in the current graph. This is a sufficient condition to guarantee

that G′
n can be decomposed into Δ matchings finally. Because

with this requirement, after successfully finding i matchings,

the residual graph has maximum node degree (Δ−i) and thus

can be decomposed into (Δ−i) matchings. If lines 3-13 cannot

find all the Δ matchings of G′
n, in 14-15, we proceed to use

ordinary method in Figure 5 to find the remaining matchings.

Finally, in lines 16-22, we use Hungarian algorithm to assign

colors to λn with the goal to maximize the color overlap

between λn and λo. We note that our algorithm is not optimal

and there is room to improve. However, it runs quickly and

provides impressive gains as shown in Section V-D.

V. PERFORMANCE EVALUATION

In this section, we evaluate WaveCube via large-scale sim-

ulations. We first introduce the evaluation methodology, and

then present the results.

A. Evaluation Methodology

Topology: Our simulation is mainly based on a (6, 6, 6)-
radix WaveCube topology. It has 3 dimensions and each

dimension has 6 ToRs. We assume each ToR has 80 10G

ports: half of them connect to 40 hosts with 10G NICs and the

other half connect to 6 other ToRs via optics. This topology

has a total number of 8640 hosts. Further, we assume each

port of ToR that connects to the optics is equipped with an

optical transceiver with a unique wavelength that carries 10G

bandwidth. The number of wavelengths on a specific ToR link

varies from 1 to 40, suggesting a variance from 10G to 400G.

Traffic patterns: We use the following traffic patterns.

• Realistic. We collect real traffic matrices from a production

DCN with ∼400 servers with 1G ports. The data center runs

Map-reduce style applications. To replay the traffic over

8640 servers with 10G ports, we shrink the transmission

time and replicate traffic spatially.

• Microsoft-based. We synthesize traffic patterns based on

measurement results from recent works [9, 19, 21] by Mi-

crosoft. These papers describe the traffic characteristics in

real data centers. For example, they found that hotspots are

often associated with a high fan-in (fan-out) manner [19],

and most of the traffic (80%) are within the rack [9]. We

capture the hotspot characteristics and assume all traffic exit

the rack to create intensive communications.

• Random. We assume each server in a ToR talks to servers

in up to 15 randomly selected ToRs. In this pattern, many

ToRs can simultaneously talk to one ToR, creating hotspots

and communication bottlenecks.

Evaluation metrics: We evaluate WaveCube from the follow-

ing aspects. First, we measure the network bisection bandwidth

of WaveCube under the above traffic patterns. Second, we

check the fault-tolerance of WaveCube. Third, we quantify

the effect of wavelength adjustment optimization in avoiding

unnecessary wavelength shifting. Fourth, we analyze the con-

trol overhead of WaveCube. Finally, we discuss the effect of

traffic stability on WaveCube.

Simulator: We implement our own simulator as there is no

standard one for our purpose. The simulator we developed

models WaveCube as a directed graph with alterable edge

weights. It takes as input the flows with sizes, start time,

sources and destinations. The simulation runs in discrete time

ticks with the granularity of ms. On each tick, the rate of each

flow is updated by running on all active flows the progressive

filling algorithm [4], which produces a bandwidth allocation

satisfying max-min fairness, and is known as a good estimation

of TCP behaviors. The sent bytes are subtracted after each

tick and completed flows are removed. The simulator calls

the bandwidth scheduler to reschedule link bandwidth period-

ically. We run on a Linux server with Dual Xeon X5560 @

2.8GHz CPU and 32G memory.

B. Achieved Network Bisection Bandwidth

Figure 7 shows the average (max/min) network bisection

bandwidth achieved by WaveCube when running 40 instances

of each of the above traffic patterns on the simulated Wave-

Cube with 8640 hosts. The results are specifically compared

against c-Through and a hypothetical non-blocking network,

which serves as the upper-bound of performance for any DCN.

From the figure, we find that WaveCube outperforms c-

Through by 300%-400% and delivers network bisection band-

width that is 70%-85% of non-blocking under all traffic

patterns. This is not a surprising result. Because c-Through

assumes one-hop pairwise circuits in its optical part, such
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Fig. 7. Network bisection bandwidth (Note: Helios performs similarly as
c-Through, OSA/Mordia perform better but they cannot support 8640 servers).

interconnect is of marginal use to offload the traffic when

hotspots are associated with high fan-in (fan-out). In contrast,

our (6, 6, 6)-radix WaveCube uses multi-hop routing in a

fixed 6-regular topology, and any pair of ToRs has 6 node-

disjoint parallel paths. Despite a fixed topology, WaveCube

demonstrates competitive performance via its rich path di-

versity. Furthermore, WaveCube dynamically adjusts its link

bandwidth to fit the underlying traffic, further improving its

performance. In summary, our results suggest that multi-

pathing and dynamic link bandwidth are effective to offload

the hotspots, and deliver high bisection bandwidth for both

realistic and synthetic traffic patterns.

C. Performance under Failures

To show fault-tolerance, we check the aggregate throughput

of WaveCube under failures. In our experiment, we generate

the node/link failures randomly, and we regard a node failure

as a combination of link failures incident to this node. We run

with the realistic traffic pattern and show the result in Figure 8.

The throughput is normalized by the non-failure case.

In the figure, we see a graceful performance degradation

with increased failures. For example, with as many as 20%
links down, the network aggregate throughput is decreased by

20%. This result is expected because WaveCube structure is

fault-tolerant. It has 2n node-disjoint parallel paths between

any pair of ToRs. Once failures happen, the traffic can be easily

routed away from the failed parts using other parallel paths.

Furthermore, WaveCube has flexible link bandwidth. In case a

link fails, the associated nodes can reschedule the bandwidth

of the failed link to other links so that the resources can be

potentially reused elsewhere.

D. Quality of Wavelength Adjustment

We evaluate the quality of our wavelength adjustmen-

t algorithm in Figure 6 on the (6, 6, 6)-radix WaveCube

with each ToR having 40 wavelengths. We first select a

base network state (S1) with initial bandwidth demand (φ1)

and wavelength distribution (λ1). Then, we generate another

network state (S2) with a new bandwidth demand (φ2) by

randomly rearranging bandwidth requirement on its links.

We run Wavelength Adjustment() to get the new wavelength

distribution (λ2) and check how our algorithm can keep its

original distribution unmodified (i.e., |λ2∩λ1|) during the state

transition (S1→S2). We compare our algorithm with the one

without optimization. We repeat 100 times for each experiment

and compute the mean and IQR, i.e., 25th-75th percentiles.
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WaveCube #Hosts LBS Time(ms) WAO Time(ms)

(6, 6, 6)-radix 8, 640 1.9 2
(8, 8, 8)-radix 20, 480 4.5 7
(10, 10, 10)-radix 40, 000 9.3 18
(12, 12, 12)-radix 69, 120 16.6 48

TABLE III
TIME COST OF LBS AND WAO.

Results in Figure 9 suggest that our algorithm effectively

avoids unnecessary wavelength shifting. For example, when

the bandwidth demand difference (i.e., |φ1 − φ2|) is 20, our

algorithm maintains 3876/4320=90% wavelengths unshifted,

while a non-optimized method only keeps 949/4320=22%
wavelengths unchanged. There is a decreasing trend on the

curves. This is because larger bandwidth demand change is

likely to cause bigger wavelength shifting. We have not been

able to compare our algorithm with the optimal solution due

to its complexity. But we are able to make an estimation. For

example, when |φ1 − φ2| = 640, the optimal solution can at

most keep 4320− 640 = 3680 wavelengths unshifted (should

be less than 3680). As a comparison, our algorithm can keep

3000 wavelengths unshifted, over 80% of the optimal.

E. Overhead of the Central Controller

The central controller handles most of intelligence in control

plane. It needs to maintain the connectivity, utilization and

wavelength distribution information for each ToR link. The

connectivity is used for detecting failures, utilization for link

bandwidth optimization, and wavelength distribution for wave-

length adjustment optimization, respectively. Required states

for these information is O(m) where m is the number of ToR

links in the network. This is modest considering Lemma 1,

which is O(105) even for mega data centers.

We measure time cost of two main algorithms executed by

the controller: link bandwidth scheduling (LBS, Section III-D)

and wavelength adjustment optimization (WAO, Section IV-B).

Table III shows the results. The result for LBS suggests that

the optimization can be finished quickly. For example, it takes

16.6ms for a large WaveCube with 69,120 hosts. Further,

we find that the runtime increases with the network size

incrementally. The result for WAO suggests that our algorithm

is time-efficient as it just spends tens of milliseconds for the

69,120-host WaveCube. The fast algorithms are essential to

make WaveCube react to new traffic patterns promptly.

F. Effect of Traffic Stability

WaveCube performs well due to its multi-pathing and dy-

namic link bandwidth. Among these two, the gain of dynamic

link bandwidth should assume certain traffic stability. The

analysis on our real traffic matrices shows over 60% traffic

stablity at minutes or even hourly timescale [28]. Another



Scale DCN #Hosts C index

Fattree 3, 456 25, 728
Container-size BCube 4, 096 48, 672

c-Through 4, 000 1, 475
WaveCube 5, 760 1, 104
Fattree 27, 648 427, 160

Large-scale BCube 32, 768 1, 228, 064
c-Through 36, 000 35, 775
WaveCube 36, 864 6, 272

TABLE IV
WIRING COMPLEXITY OF DCNS

5 .

study [10] found that 60% of ToR-pairs see less than 20%
change in demand for seconds. Further, recent work [19] used

300s to compute the demands from their traces and found

that the present traffic demand can be well predicted from

the past ones. All of these studies give us confidence that

WaveCube’s dynamic link bandwidth can take effect on a

variety of practical workloads. However, there do exist dy-

namic workloads [20], and we note that if the traffic is highly

dynamic, WaveCube’s performance would be unpredictable.

We will further evaluate WaveCube under highly dynamic

traffic and design counter-measures in future work.

VI. PRACTICAL DEPLOYMENT ANALYSIS

We discuss practical deployment issues like wiring, cost and

power of WaveCube, and compare with prior DCNs. Given a

large body of recent designs, we select Fattree [22] (switch-

centric), BCube [17] (server-centric) and c-Through [27]

(optical) as representatives. Then, we assess the hardware

feasibility of WaveCube by comparing it with OSA [12].

A. Wiring Complexity

We observe that many decent DCNs [16]–[18, 22], while

providing good performance, are hard to construct in practice

due to dense topologies and strict wiring rules. For example,

many wires must be connected between specific devices or

specific ports. How to build a data center is a practical

question, especially when the DCN is large. Comparing to

recently proposed DCNs, WaveCube is perhaps among the

easiest-to-build ones in terms of wiring.

Directly counting the number of wires as [17] did is not

a good way to quantify the wiring complexity. Because not

all the wires have the same difficulty to set up in practice.

To this end, we classify wires into rule-based and rule-free.

The rule-free wire refers to the wire that if one end is fixed,

the other end can be freely selected from a set of devices or

ports. Usually, wires of servers to ToR are rule-free and very

easy to connect. In contrast, a rule-based wire requires that

once one end is fixed, the other end must be connected to

certain device or port. Such rule-based wiring is usually error-

prone and needs special care. Hence, the complexity of wiring

mainly comes from the rule-based wires.

To quantify the complexity, we further understand place-

ment of devices in DCNs. For maintenance and management,

devices are arranged in racks, and racks are organized in rows

and columns [5]. Thus, we assign each rack a coordinate (i, j).
Suppose two devices a and b are in different racks (ia, ja)
and (ib, jb), we use d(a, b) = |ia − ib|+ |ja − jb| (Manhattan

distance [3]) to estimate the wiring length between them.

Device Cost($) Power(W) Device Cost($) Power(W)

ToR (10G) 500† 12.5† (DE)MUX 3000 0

MEMS 500† 0.24† Coupler 100 0

WSS 1000† 1† Circulator 200 0
Transceiver 800 3.5 - - -

TABLE V
COST AND POWER FOR DIFFERENT DEVICES (†PER PORT VALUE), SOME

VALUES ARE REFERRED FROM [15].
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Fig. 10. Cost and power for different DCNs.

We assume two devices in the same rack have length
d(a, b) = 1. We use r(a, b) to denote whether a wire is rule-
free (i.e., r(a, b) = 0) or rule-based (i.e., r(a, b) = 1). Then,
we summarize the wiring complexity of a data center as:

C index =
∑

∀a,b∈V

r(a, b)× d(a, b) (5)

With (5), we compare WaveCube with Fattree, BCube and

c-Through. In order to make the comparison more accurate,

we compute the complexity of each DCN according to its own

structure characteristics. We put racks in rows and columns,

and place servers and switches in a way that the length of

rule-based wires is optimized.

The results are shown in Table IV5. It can be seen that Wave-

Cube is 2-3 orders of magnitude simpler than Fattree/BCube

and 1 order simpler than c-Through at large scale. When the

size grows, the complexity of WaveCube grows much slower

than the others. The advantages of WaveCube come from 2

main reasons: 1) A single optical fiber can aggregate high data

volume which otherwise need to be carried by many copper

cables; 2) Most of wires in WaveCube are local except the

loop-back ones, while many wires in Fattree and BCube are

(and have to be) between remote racks. In c-Through, all ToRs

connect to the central MEMS, introducing remote wiring.

B. Cost and Power Consumption

We estimate the cost and power consumption for different

DCNs based on the values listed in Table V. Note that in 10G

electrical networks, optical transceivers are required for over

10m links [15]. So long-distance, cross-rack links in Fattree

or BCube must be optical.

Figure 10 shows the results. It is evident that, to host the

same number of servers, WaveCube is significantly cheaper

than either Fattree (∼35%) or BCube (∼40%) and consumes

much less power (∼35% for both). This is counter-intuitive

since it is common-sense that optical devices such as WSS

and MEMS are expensive. However, a detailed check reveals

that the real dominance is optical transceivers. Both Fattree

and BCube have much higher switch port density, and so their

cost is higher. For example, Fattree uses 5k3/4 ports to connect

k3/4 servers (where k is the number of ports on a Fattree

5Many other DCNs like VL2 [16], DCell [18], Helios [15], OSA [12], etc.,
are not listed here. Basically, VL2 is similar to Fattree. DCell is server-centric
as BCube, they have extremely complex wiring rules making them hard to
build. Helios and OSA are similar to c-Through.



switch), while BCube uses (l + 1)kl+1 ports to connect kl+1

servers (where k is the number of ports on a BCube switch,

and l is the level of BCube).

In contrast, WaveCube only has ToR switches, and c-

Through has a few more electrical switches in addition to

ToRs. Both have lower switch port density, leading to lower

cost. Due to the same reason, the power cost of WaveCube

and c-Through is lower than Fattree and BCube. The same

trend applies to other related DCNs: electrical ones are more

expensive and consume more power than optical ones at the

era of 10G. Finally, we observe that WaveCube is slightly

costly than c-Through. This is because WaveCube employs a

few more optical devices such as circulator and coupler, and

WSS is more expensive than MEMS.

C. WaveCube Hardware Feasibility

The crux of showing the feasibility of WaveCube is to

demonstrate the feasibility of optical component in Figure 2.

This part is similar to that of OSA without introducing any

new advanced optical devices. To this end, instead of building

a dedicated small WaveCube testbed, we leverage OSA testbed

to discuss the hardware feasibility of WaveCube. (Interested

readers please refer to [12] for details of OSA testbed.)

In the OSA testbed, instead of direct connection, one Polatis

series-1000 OSM/MEMS with 32 ports (16×16) was used to

connect 8 PC-emulated ToRs through WSS units. The key

difference between WaveCube and OSA is that WaveCube

removes MEMS and directly connects ToRs in a k-ary-n-cube

topology. As we have shown through analysis and simulations,

this seemingly simple architecture re-design has translated to

significant benefits in scalability, fault-tolerance, as well as the

optimal wavelength assignment.

From the implementation perspective, WaveCube can be

built by fixating the MEMS circuits and simply treating them

as dumb fibers. Therefore, the extensive feasibility study in

OSA paper [12], as a side effect, has also demonstrated the fea-

sibility of the optical component of a small-scale WaveCube.

However, we note that even with such a small-scale testbed,

it is far from sufficient to conduct performance evaluation for

WaveCube, whose target is a scalable optical DCN. Thus, we

have focused on evaluating WaveCube in large-scale simulated

settings in last section, leaving the implementation of a non-

trivial WaveCube prototype as future work.

VII. CONCLUSION

We have presented WaveCube, a scalable, fault-tolerant,

high-performance optical DCN architecture. WaveCube re-

moves MEMS from its design, thus achieving scalability. It

is fault-tolerant since there is no single point of failure and

multiple node-disjoint paths exist between any pair of ToRs.

WaveCube delivers high performance by exploiting multi-

pathing and dynamic link bandwidth. Our evaluation shows

that WaveCube achieves all its design goals and our practical

deployment analysis shows that it holds promise in practice.
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