
1 Network representation and path generation

pathmatrix Generate the matrix corresponding to all paths between end nodes,

dijkstra Run Dijkstra’s algorithm from a single source.

pathv Generate path vectors using the output from Dijkstra’s algorithm.

Networks are represented by a pair of sparse adjacency matrices. The cost
matrix C represents distances between nodes: Cij is the cost to traverse an edge
between node i and j, or is zero if there is no edge between the nodes. The label
matrix has the same nonzero pattern, but Lij represents the one-based index
of the edge between i and j. Matlab sparse matrices are stored in compressed
sparse column format: for each column in the matrix, there is a list of row
numbers and values for the nonzeros in that column. From the perspective of
performance and storage, then, Matlab’s sparse matrix format is actually an
adjacency list representation for the graph, not a dense adjacency matrix.

The path generation step is done using the usual Dijkstra’s algorithm. The
distances are kept in a binary heap, so that the run time for a single source
is O(V log E). I maintain an auxiliary array so that I can go from the heap
order to initial label order and back with equal ease; this simplifies the step in
Dijkstra where you have to update distances at frontier nodes.

2 Row and column selection

colselect Eliminates unused edges, as well as any edges that appear on all the
same paths. Eliminating edges that always appear together is the simplest
form of “network virtualization.” Preprocessing the path matrix with this
routine will decrease the cost of the row selection, but strictly speaking it
is not necessary.

rowselect Chooses a set of linearly dependent rows (Ḡ) from the path matrix
G. Also generates the Cholesky factor R of ḠḠT . Depending on the
options chosen, R may be produced in single or double precision using a
packed or unpacked layout.

resizeR Used by rowselect to expand the storage used for R.

addpaths Used by rowselect to scan through a piece of G and add any new
(independent) rows to Ḡ. Calls different auxiliary routines (addpathsd
and addpathsf) to handle different layouts and precisions of R.

The column selection eliminates obviously redundant edges – edges that
never appear, and edges that always appear together (corresponding to repeated
columns in G). Eliminating these edges from G should not affect the later
path loss rate computations, except to decrease their cost somewhat. Column
selection is optional.

1



The row selection routine is a variant of the QR decomposition with column
pivoting (the Gram-Schmidt algorithm). All of Q and most of R are discarded
as soon as they are computed; they are not needed explicitly, and they would
take a substantial amount of memory. Row selection using column-pivoted QR
is described in Golub and Van Loan’s book on Matrix Computations, among
other places; the Gram-Schmidt procedure is described in any introductory
linear algebra text.

The R factor produced by rowselect can be stored either in a full (column-
major) format or a block packed format. For this paragraph, assume all indices
are zero-based. In full format, Rij is stored at position i + j*ldR, where ldR
is the leading dimension of the storage allocated for R. In the packed format,
Rij is stored at i + (2*j - J*kb)*(J+1)*kb/2, where kb is the block size, and
J = floor(j/kb). If kb is 2, for example, the block packed layout for a 4-by-4
matrix is 

0 2 4 8
1 3 5 9

6 10
7 11


The R factor can also be computed using either single or double precision. Mat-
lab works naturally with full storage double precision matrices, but packed single
precision storage takes roughly a quarter of the space. Ordinary (unblocked)
packed storage is also described in the LAPACK manual.

3 Loss rate vector calculation

compute xG Compute the xḠ vector which is the minimal norm solution to
ḠxḠ = b̄.

trsolve Solve triangular systems using the R factor produced by rowselect.
In the simplest form, trsolve is equivalent to applying the backslash
operator in Matlab. However, the trsolve routine handles single precision
and packed storage as well.

The loss rate calculation is basically

ḠxḠ = b̄

xḠ = ḠT y

Using the factorization ḠḠT = RT R, y can be computed using two triangular
solves; to compute xG then only requires a multiplication by ḠT .

In single precision, it is useful to do a single step of iterative refinement.
Essentially, iterative refinement involves solving a system in finite arithmetic,
then solving a system for the error. Iterative refinement is described in Golub
and Van Loan’s book, Demmel’s book, and other books on numerical linear
algebra.

2



Note that xḠ will be different if different Ḡ matrices are chosen. Even if the
xḠ matrix is different, though, the loss rate computations will be the same, so
long as the difference is in the null space of G.

3


