
1

Rake: Semantics Assisted Network-based
Tracing Framework

Yao Zhao, Yinzhi Cao, Anup Goyal, Yan Chen and Ming Zhang†
Northwestern University, Evanston IL, USA

†Microsoft Research, Redmond, USA

Abstract— The ability to trace request execution paths
is critical for diagnosing performance faults in large-
scale distributed systems. Previous black-box and white-
box approaches are either inaccurate or invasive. In this
paper, we present a novel semantics-assisted gray-box
tracing approach, called Rake, which can accurately trace
individual request from network traffic. Rake infers the
causality between messages by identifying polymorphic IDs
in messages according to application semantics. To make
Rake universally applicable, we design a Rake language
so that users can easily provide necessary semantics of
their applications while the core Rake component can be
reused. We evaluate Rake using a few popular distributed
applications, including web search, distributed computing
cluster, content provider network, and online chatting. Our
results demonstrate that Rake is much more accurate
than the black-box approaches while requiring no mod-
ification to OS/applications. In the CoralCDN (a content
distributed network) experiments, Rake links messages
with much higher accuracy than WAP5, a state-of-the-
art black-box approach. In the Hadoop (a distributed
computing cluster platform) experiments, Rake helps to
reveal several previously unknown issues that may lead to
performance degradation, including an IPC (Inter-Process
Communication) abusing problem.

1. INTRODUCTION

Large-scale distributed system and cloud computing
have undergone unprecedented growth in recent years.
Parallel computing platform, such as Hadoop [8], enables
Yahoo to search through the entire Library of Congress
in fewer than 30 seconds [5]. Many of these systems
employ load balancing, caching, and replication to en-
hance capacity and availability. On the positive side,
if some nodes misbehave, the whole system may still
function properly. On the negative side, debugging such
systems becomes extremely challenging because many
performance problems are not only transient but also
unpredictable.

Traditional troubleshooting systems monitor individ-
ual services and machines independently. For example,
many commercial network management products [2]–
[4, 24] keep track of resource usage, such as CPU
and disk, and generate syslog messages and various
alerts. However, it is well known that the performance
of individual machines or network elements may not
directly correlate with user-perceived performance. As

a result, these commercial products often raise too many
alerts. In fact, most of the alerts are simply ignored
because they do not affect users.

Recently there has been plethora of research on debug-
ging performance problems that affect individual user
requests. Such work normally leverages the task tree1

to diagnose faults either deterministically or statistically.
A task tree encapsulates the set of recursive messages
that result from a particular task or user request. For
example, the task of accessing a web page usually in-
volves DNS, HTTP, and database queries and responses.
By analyzing delays between messages, we can pinpoint
the faulty nodes or sometimes even the root causes.
However, extracting a task tree from a large number of
messages has proven to be extremely challenging, and
hence has been intensively studied in [6, 7, 18, 19, 21].
An ideal approach to extracting task tree should possess
the following properties:

• Accuracy. It can accurately identify the causality
between different messages, hence further locate the
problematic nodes.

• Non-invasiveness. Existing approaches such as X-
Trace [18] and Pinpoint [19] require modifications
to the OS, middleware, and/or applications. While
these approaches provide accurate tracing results, their
invasiveness prevents them from being widely adopted
for two reasons. First, since they require source code
instrumentation, they are inapplicable to legacy ap-
plications or third party applications. Second, even
if source code is available, instrumenting a compli-
cated, continually-evolving application can be time-
consuming and error-prone.

• Scalability. Modern distributed systems such as Web
Search may comprise thousands of machines and
receive thousands of queries per second. An approach
should be able to handle such systems efficiently.

• Applicability. It is desirable to be applicable to all
applications. Due to various practical trade-off such
as model limitation, accuracy requirement and instru-
menting or deployment overhead, no single approach
can be applicable to all systems. One goal of this
paper is actually to expand the family of tracing and

1Similar terms such as execution path or causality path are also used.



diagnosing approaches with a handy approach suitable
for many distributed systems.

Most previous approaches for tracing task trees can
be classified into either the black-box ones or white-
box ones. A white-box approach usually needs to insert
certain unique IDs into the messages by instrument-
ing the application, the middleware, or the OS [18,
19]. In contrast, a black-box approach does not need
any instrumentation or understanding of application’s
internal structure or semantics [6, 7, 21]. Instead, it
only relies on temporal correlation between messages.
While a black-box approach is non-invasive, it tends to
have limited accuracy. For instance, even with extensive
training period, [10] may still mistakenly infer certain
false dependencies. This motivates us to develop a novel,
“gray-box” approach for task tree extraction which is
both non-invasive and accurate.

In this paper, we propose Rake, a semantics assisted
gray-box approach to understand the distributed system’s
execution and further locate performance problems and
failures. The basic idea stands on the observation that
in messages of the same task there are polymorphic
“IDs” that can be dug out and utilized to link the
messages into a task tree. In order to design Rake
as a general performance diagnosis tool, we made the
following contributions:

• We propose the novel semantics assisted diagnosis
approach which is non-invasive because Rake needs
no modification to applications, middleware or the OS.
Rake is also a gray-box approach, requiring limited
semantics instead of implementation details.

• We propose general guidelines to identify necessary
semantics of applications that can be used to link
messages. Two simple rules are demonstrated to be
general and powerful enough to allow Rake to be
applied in plenty of popular applications.

• We design an XML-based Rake language to allow
users to provide application semantics, which makes
Rake a general tool that can be quickly adopted to
different applications with different semantics. It is
also easy to extend Rake to a new or an updated
application by just writing an XML file with a few
user libraries if necessary.

• We demonstrate the feasibility and accuracy of Rake
using some testbed experiments including a content
distribution network – CoralCDN [20] and Hadoop.
In addition, we execute the accuracy analysis based
on real measurement data of one major web search
infrastructure. Evaluation results demonstrate that the
semantics based approach is much more accurate
than the black-box approaches while requiring no
modification to OS/applications or any logs.

The rest of this paper is organized as follows. We
give related work in Section 2, and introduce Rake in

Sections 4. Practical issues such as trace collection are
discussed in Section 5. We present evaluation results in
Section 6 and conclude in Section 7.

2. RELATED WORK

Significant recent research has been done on debug-
ging or troubleshooting service problems in the view of
the whole distributed systems. Many of these systems
model the dependencies between components with the
task tree (which is called either causal path or execution
path) [6, 11, 19, 21]. A task tree embodies control flows,
resources, and performance characteristics associated
with servicing a request.

1. Task Tree Extraction Approaches

1) Black-box approaches: Project 5 [6] attempts
to identify execution paths of messages as passively
as possible with no knowledge of applications. Two
algorithms, the nesting algorithm and the convolution
algorithm, for inferring the dominant causal paths are
proposed in Project5. Reynolds et al. further proposes
WAP5 [21] to improve Project 5. WAP5 also uses time
correlation between incoming and outgoing messages on
a node to link messages with probabilities. A simple
exponential function is introduced to estimate the linking
probability between two packets, and therefore close
messages are linked with high probabilities. Anandku-
mar et al. studied the linking of transaction footprints
and reduce the maximum likelihood rule to the minimum
weight bipartite matching problem [7]. These black-
box based approaches [6, 7, 21] can be easily applied
to different applications; however, the accuracy heavily
depends on cross traffic and application properties be-
cause time correlation is the only information to link
messages.

The most recent research work, Sherlock [10], con-
siders an aggregated dependency graph instead of indi-
vidual task trees. A dependency graph models dependent
relationship among components in the network. Active
measurements are then conducted to obtain users’ expe-
riences on the latency of different network applications.
The follow-up work of Sherlock, Orion [14], uses the de-
lay spike based analysis to further increase the accuracy
of discovered dependencies.

2) White-box approaches: X-Trace [18] tags all
network operations resulting from a particular task with
the same task identifier. To do so, the TCP/IP stack
is enhanced and applications should be instrumented to
invoke X-Trace. However, for a large distributed system
using many softwares from different vendors even on
different platforms, X-Trace may be limited to a certain
part of the system where software source codes are
available and modifiable. Similarly, Pinpoint [19] also
instrument middleware to track the requests as the flow
through the system.

2



h
h

h
h

h
h

h
h

h
h

h
h

App Knowledge
Invasiveness Non-Invasive Invasive

Network sniffing Interposition Logs Source code modification
Black-box Project 5, Sherlock WAP5 Footprint
Grey-box Rake Magpie,SALSA
White-box X-Trace, Pinpoint

TABLE I Classification of management and diagnosis systems.

3) Gray-box approaches: A gray-box approach is
something between the white-box approach and the
black-box approach. It does use certain general appli-
cation knowledge, but does not require the detailed
implementation of applications such as data structures.
Probably Magpie [11] is the closest related work to Rake.
Magpie works with events generated by the operating
system, middleware, and application instrumentation. In-
stead of unique identifiers, Magpie relies on experts with
deep knowledge about the system to construct a schema
of how to correlate events in different components.
SALSA [23] is another log-based approach which relies
on the application logs to derive state-machine views of
the system’s execution. In comparison, Rake generally
uses network sniffed traffic as the input, while Magpie
and SALSA rely on the event logs generated by appli-
cation and the operating system. Such approaches may
suffer from many problems as mentioned in Section 1.

4) Intrusiveness Classification: Table I shows a
classification of previous diagnosis and workload ex-
traction systems. Sherlock [10] and Project5 [6] only
use network sniffed traces, which has no modification to
the OS and applications. Reynolds et al. develops their
own library to collect OS level traces such as system
calls in [21], which can obtain richer information than
pure network sniffing, but is more invasive. X-Trace [18],
however, requires users to modify both the OS and the
application to inject unique IDs in all messages. Appar-
ently, this approach is extremely invasive. Interestingly,
the previous works usually are of two extremes, either
very invasive white-box or not quite invasive black-box.
This motivates our research of semantic-based diagnosis
system, Rake, which is non-invasive and very accurate
in terms of message linking.

2. Other Related Works

It is worth mentioning that the gray-box concept and
semantics are general and used in other research areas as
well. For example, in [9], Arpaci-Dusseau et al. studied
how to treat OS as a gray box and then disseminate
OS research ideas without requiring any changes to the
underlying OS. Also protocol semantics are widely used
in security area, such as in network intrusion system [16]
for packet classification.

3. PROBLEM DEFINITION

It is desirable to achieve the accuracy in tracing task
trees as white-box approaches (such as X-Trace [18])

while not injecting IDs by patch the whole system.
This motivates us to study the possibility to dig out
meaningful IDs out network messages. We designed
Rake based on the following key observation:

Generally, in distributed system implementations,
there are no explicit unique ID between all the messages
in a given task tree; there are, however, polymorphic IDs
along the paths of the task tree. Further, the polymorphic
IDs can be extracted with proper semantic knowledge of
the system implementation.

For example, consider the recursive DNS query pro-
cess. One can take the DNS query target as the ID
of the query and response messages, and hence all the
DNS messages for the same query task can be easily
connected. With the knowledge on the format of the DNS
query/response messages and the recursive DNS query
process, a DNS task tree can be extracted from mixed
network traffic and rebuilt easily.
1. Mathematical Model

A task tree is defined as a tree G(V, E). Each node in
V is a message and an edge v1 → v2 means message v2

is the result of processing v1. In this tree model, a child
message is triggered by only one parent message. This
simple model works for many applications and adopted
by most diagnosis approaches [6, 10, 21]. It will be our
future work to extend Rake for more general models.

To extract the task trees out of a mixed set of mes-
sages, a few steps are enough:
1) Determine message type by signatures. Assume func-

tion S(m) uses signature matching to determine the
type of message m. For example, DNS messages can
be simply identified by the port number of 53.

2) Extract the ID set of message m. Let set Pm =
fS(m)(m), where ft extracts the IDs of messages of
type t. For a DNS response message, we can simply
use the host name of the query as the ID.

3) Extract the ID set of following messages which are
trigger by message m: Fm = gS(m)(m) and gt infers
the expected IDs of the messages to be triggered by
m. For example, Fm of the DNS query can be the
query host name, which will be the ID of the DNS
response message.

4) Join of ID sets to find causality: linking messages
m1 and m2 if Pm1

∩ Fm2
6= ∅. If a message has

multiple parents, pick the closest one in time. In the
DNS example, both the Fm of the DNS query and
the Pm of the corresponding DNS response message
are the same, so these two messages are linked.

3



Traced data  
(e.g. sniffed at 
routers/switches) 

Application 
semantics 

User library 

Linked 
messages 

Language parser

Message linker

Diagnosis module

Diagnosis 
output 

Rake Core

Fig. 1. Architecture of Rake

2. Challenges

While the high-level idea and the mathematical model
of Rake is very simple, we need to answer the following
key questions to build practical troubleshooting systems:

• The simple model dose not tell us what are the
functions f and g to extract IDs out of messages. How
can we figure out these functions using the semantics?
Furthermore, are there general rules?

• Different applications have different semantics. How
can we design Rake to be general and easily adopted
by different applications with different semantics?

• How to make Rake accurate and efficient?

4. DESIGN OF RAKE

In this section, we describe our semantic assisted task
tree extraction scheme, Rake. We first describe the high-
level philosophy of Rake, and then describe, in detail,
the design of Rake, including selection and utilization of
semantics.

1. System Architecture

Figure 1 shows the architecture of our Rake system.
The core components of Rake include three modules: a
language parser, a message linker and a diagnosis mod-
ule. To decouple Rake core from the various application
semantics, Rake takes unified semantics as the input, and
the language parser reads the application semantics in
an XML based language (See Section 4.3). The message
linker then extracts message IDs and links related mes-
sages according to the IDs. Finally, the diagnosis module
takes the task trees as the input and output the diagnosis
results.

2. Semantics Used in Rake

Given a new application, a natural question to ask is
what kind of knowledge in the application is needed?
As shown in the mathematic model, only semantics that
help us find the functions S, f and g to extract IDs
of messages are of interest. So first of all, we need
the high-level flow information of the messages through

Node 1
A C

D

Node 2

B

Node 3

Fig. 2. Example of message linking

the system. For example, for the DNS system, we need
to know the recursive/iterative DNS query procedure.
Furthermore, to extract the IDs from messages, certain
knowledge of the message format is necessary. On the
other hand, we find Rake does not require very detailed
implementation knowledge. For example, it does not
require the internal data structures, multi-threading us-
age, queue maintenance or others. Protocol specifications
with complete state machines and packet format are
enough to find the causal relationship of messages.
Taking DNS as the example again, the knowledge in the
DNS RFC is sufficient.

Consider the triggered event of a message. A message
may trigger the node to communicate with other nodes,
or trigger a response back (See Figure 2). We elaborate
on the two cases as follows:

• Message ID transforming: This is for linking an outgo-
ing message to its triggering incoming message, when
the incoming message triggers further communication
to other nodes (e.g. linking messages B and C to A

in Figure 2). Often times, the incoming and outgoing
messages are also related in their content, as well as
in logic. Especially in many applications of query
style, the query target usually is embedded in the
query messages, though probably in different formats.
For example, consider a chat message going from
the sender to the IRC server. The IRC server simply
forwards the chat message to another IRC server. In
this case, taking the chat content as the message ID,
this ID is kept in the incoming and outgoing messages.

• Communication protocol: This is for linking the
query and the response messages between two nodes
(e.g. linking message D to C in Figure 2). The query
and response style is prevalent and the communication
protocol itself guarantees that the sender can link its
multiple queries to the responses, even with reorder-
ing. For example, the protocol can specify a query
ID in the query and match the response ID with the
query ID. With the knowledge of the communication
protocol, Rake can link the query and response as the
sender does. For example, Hadoop IPC (inter-process
communication) [8] uses a unique ID to match every
pair of calls and returns in one communication channel
(or socket).

4



3. Rake Language to Utilize Semantics

Different application and distributed systems have
different semantics. Implementing separate codes using
different semantics for each application will waste much
programming time on similar or identical components.
Therefore, we attempt to design a unified Rake infras-
tructure, to which users can supply the semantics of
their applications easily. We provide a simple language
to allow users to present their semantics, and the Rake
infrastructure works as an interpreter, understanding the
user semantics and using them to link messages.

1) Basic Rake Language: Since XML is a widely
used, general-purpose specification for creating custom
markup languages, we choose XML to present the Rake
language. The Rake language is designed to generalize
the linking methods introduced in the above section.

We used IRC as an example to describe the Rake
language (See Figure 3). The Rake language is message
driven, and it mainly defines the properties of the mes-
sages. In this simple example, we are interested in the
chat messages, and hence define a message named “IRC
PRIVMSG” with the XML tag <Message name=”IRC
PRIVMSG”>. There are five basic properties for a
message to specify, which specifically define the three
functions S, f and g in our mathematic model:

• Signature: The signature property is used to identify
the message type. Usually different messages have dif-
ferent format, different IDs carried and different fol-
lowing messages triggered. Therefore, it is necessary
to provide accurate signatures to classify messages
correctly. We provide a simple content-based matching
mechanism. For example, protocol type, port number
and regular expression can be used to classify IRC
chat message.

• Link ID: Link ID is the ID that this message car-
ries and is used to match with the parent message
triggering this message. For example, in IRC chat
messages, the chat content (including channel, sender
and the chat words) can be used as the Link ID, and
the regular expression extracts the content out (See
Figure 3).

• Child ID: The Child ID specifies the IDs that will
be in the future messages triggered by this message.
Note, one message may trigger several messages and
the Child ID may be a set of IDs. The Child ID is
used to match the Link ID, introduced above. For
example, when an IRC server first receives a chat
message from the client, the Child ID is the chat
content. When the IRC server delivers the message
to another server, the second message’s Link ID is
also the chat content. Hence the two messages can
be linked together because the first one’s (one of)
Child ID matches the second one’s Link ID. If the
Child ID is the same as the Link ID of the same

<Rake>
<Message name=” IRC PRIVMSG”>

<S i g n a t u r e>

<P r o t o c o l> TCP </ P r o t o c o l>
<P o r t> 6667 < / P o r t>
<Regex> PRIVMSG </ Regex>

< / S i g n a t u r e>

<Link ID>

<Type> R e g u l a r e x p r e s s i o n < / Type>
<P a t t e r n> PRIVMSG\ s + ( . ∗ ) < / P a t t e r n>

< / Link ID>

<C h i l d I D>

<Type> Link ID </ Type>
< / C h i l d I D>

<Query ID>

<Type> None < / Type>
< / Query ID>

</ Message>
< / Rake>

Fig. 3. Example of IRC XML description

message, the type of Child ID can be set to some
particular value indicating the equality (e.g. in IRC
case in Figure 3).

• Query ID and Response ID: The Query ID and Re-
sponse ID pair is similar to the Link ID and Child ID
pair. But these IDs are for the query/response or RPC
style communication. Usually, based on the program-
ming habit, the query and response can be matched
by five tuple (source IP, source port, destination IP,
destination port, protocol), and some user-defined
query/response ID. In the IRC example, Query ID and
Response ID are not applicable, hence these IDs can
be set to the “None” type or ignored in the XML file.

Note the union of Link ID and Response ID makes the
g function of the message, and the union of Child ID and
Query ID is the f function.

2) Signatures: We provide a content-based signature
matching to classify messages. Currently, Rake supports
four types of signatures: packet header field matching,
expression testing, regular expression matching and user
defined function. The first two types are borrowed from
TCPDUMP filters.

For the packet header field matching, the user can
specify some fields in IP, UDP and TCP headers. For
example, the IP protocol field specifies whether the
payload is UDP or TCP. The port in UDP and TCP
header is also useful.

The expression matching allows users to specify some
complex signature matching. For example, to differenti-
ate the DNS query and response messages, we check if
expression udp[10]&128 is 0 or not. The eleventh byte
since the UDP header 2 is the right the flag byte for
DNS packets. The expression format is similar to that in
TCPDUMP.

The regular expression matching is useful for mes-
sages with text format, e.g., IRC and HTTP messages.

2Actually this is the 3rd byte of the UDP payload.

5



<Message name=”DNS Response ”>
. . . . . .

<Link ID>

<Type> U s e r F u n c t i o n < / Type>
<L i b r a y> dns . so < / L i b r a y>

<F u n c t i o n> Get DNS Dest </ F u n c t i o n>

</ Link ID>

<C h i l d I D i d =” 0 ”>
<Type> U s e r F u n c t i o n < / Type>
<L i b r a y> dns . so < / L i b r a y>

<F u n c t i o n> C h i l d I D s < / F u n c t i o n>

</ C h i l d I D>

< / Message>

Fig. 4. Example of DNS XML description

Users can write regular expression to classify messages.
In the IRC example, we simply use the regular expression
“PRIVMSG” which checks if the message contains the
string or not.

While we believe most signature can be expressed
in the previous three pre-defined ways, there may be
some special signature patterns that are more complex.
Hence, as the last resolve, we allow users to provide
their functions. The details of the user specified function
will be introduced in the Section 4.3.3, where we have
examples.

Note, all the matching rules defined in a same signa-
ture tag are combined using the “And” operation, which
means the message classified as this type should satisfy
all the rules. If the users need to specify some alternative
matching rules, they just need to write multiple Signature
definitions.

3) Matching IDs: We define four types of IDs in
Rake: Link ID, Child ID, Query ID and Response ID.
We first describe the common properties they share, and
then describe the unique properties of some of them.

1) Common properties: The common properties
specify how to get the IDs from the message. The first
property is TYPE, specifying the method to extract the
ID. Currently, we define the following types:
• Regular expression: For some applications with pay-

loads in text format, the IDs of messages can be
extracted out by regular expressions. For example, a
simple expression can extract the URL in the HTTP
packets as the ID.

• Block: User can specify some blocks in the message
as the ID. This may be useful for some messages with
binary format. For example, for the DHT query and
response messages in CoralCDN [20], the first four
bytes (actually an integer) are the query and response
ID.

• User defined functions: In some application, the IDs
in a message may not be extracted from the packet
payload using simple methods, e.g. regular expression
mentioned above. For example, in CoralCDN, a HTTP
requests triggers the Coral webproxy to query other
Coral nodes using DHT packets for caches. A 20-byte
ID is generated by hashing the HTTP URL with SHA1

hash function [17]. Therefore, to get the Child ID
of the HTTP request, Rake should call the sha1
hash function. Since we cannot exhaustively predefine
the ID extracting functions, we choose to let user
supply their own function. In Rake implementation,
we utilize the dynamic (or shared) library techniques.
Rake specifies the interfaces, defining the input and
output of the interfaces and the user just implements
the interface accordingly. For the DNS example (See
Figure 4), for the Link ID of DNS Query messages,
the type is User Function, the user provided library is
dns.so and the function is Get DNS Dest.

• Special types: One special type is NONE, which means
some ID (usually Query ID or Response ID) may not
exist. Another type is to reuse another ID, e.g., when
the Child ID is the same as the Link ID.

2) Special matching of Query ID and Response ID:
As we described, the Query ID and Response ID match-
ing is usually for the query/response or RPC style
protocols. So implicitly, the query and the response are
in the same network connection (or socket).

3) ID inheritance: In some cases, a message may
need to inherit some IDs from its parent message to
link its own triggered messages. This may happen in
the query/response style communication. For example,
in Hadoop distributed file system (Hadoop DFS), to
download a file, the client will submit two sequential
RPC calls “getFileInfo” (with the query QA and the
response RA) and “getBlockLocations” (with the query
QB and the response RB). In the two queries, the target
filename can be extracted as the ID, and we can link the
two queries (QA and QB). Meanwhile, the query and its
response (e.g. QA and RA) can be linked using the RPC
call ID in the messages. However, the correct linking
should link the response of the first “getFileInfo“ call
(RA) to the second query (QB). Unfortunately, RA con-
tains some file properties, but not filename. Therefore,
it is desirable to let the response RA to inherit the ID
(i.e. filename) from its parent message, the query QA.
In the semantics description of the response RA, we can
use the following tags to specify the inheritance:

<I n h e r i t I D name=” F i l ename ”>
P a r e n t . Link ID

< / I n h e r i t I D>

<Fo l low ID>

<Type> I n h e r i t < / Type>
<Value> I n h e r i t I D . F i l ename </ Value>

< / Fo l low ID>

In this example, the message inherits its parent mes-
sage’s Link ID and renamed it to be “Filename”. Then
the Child ID of the message is specified to be the
“Filename” inherited.

4. Generality and Applications of Rake

A key question to answer is that: Does semantics as-
sisted linking work in every application? In this section,

6



we discuss the potential limitation of Rake, and discuss
the popular applications that Rake can work with.

1) Potential Limitations: In logic, if a message trig-
gers another message, they should be related. However,
their relation may not be revealed by their content. And
this is the potential area that Rake cannot be applied to.

Take Hadoop distributed file system [8] as an example.
The master node stores the index of the files (e.g. records
of (Filename → FileID)) and the slave nodes store the
files. When a client request a file with filename S, master
node translates it to the FileID I , which can be a random
number. There is no way to map S to I even if users
supply some user functions. There are two potential
implementations: 1) iterative: the master node retrieves
the file through I for client; 2) recursive: the master
node returns I back to the client and client goes to fetch
the file itself. In the first implementation, Rake fails to
get the task tree; however, in the second case, Rake can
link the query of file S and the response of FileID I

using the query/response ID in the messages. Fortunately,
Hadoop takes the recursive way because it wants to keep
the master node working on indexing only and avoid
overload of delivering data. Hence in the real Hadoop
implementation, Rake does not have linking problem.

In short, the fundamental limit of Rake is that some
related messages may not be able to be linked together
because some key mapping happens in the memory of
the program and there is lack of alternative semantics for
linking. But we find that most of the distributed systems
adopt the recursive model to reduce server load. Thus this
problem does not happen and Rake is able to identify the
task trees for many distributed applications.

2) Rake Applications: Our target is mainly the large
scale distributed systems, which usually involve many
nodes and complex structures such as hierarchy or DHT.

We studied several applications in different categories:

• Large-scale web search system: We investigate a
web search system of one of the top search service
providers and Section 6.5 describes more details.

• Distributed Cluster Computing Platform: We de-
ployed Hadoop [8], which is an open-source imple-
mentation of Google’s MapReduce and is widely used
in industry such as Yahoo!, Amazon and Facebook.
We evaluate the diagnosis ability of Rake using some
testbed experiments (See Section 6.4).

• Contend distribution networks: Specifically, we stud-
ied and deployed CoralCDN [20]. Our evaluation in
Section 6.3 shows the accuracy of Rake is much
higher than the black-box approach WAP5 [21].

• IRC and messengers: In our description of Rake, we
already use IRC as an example as IRC’s semantics is
simple and enough for Rake to utilize. More detailed
evaluation can be found in [25]. Similarly, we inves-
tigate messengers such as MSN and believe the chat

content can be easily used to identify the flow of the
chat messages in the system.

5. Accuracy of Message Linking

The message linking is based on the IDs extracted
from messages using application semantics, and there-
fore the accuracy depends on the application and we have
accuracy analysis for the four applications we studied in
Section 6. Here we describe, in high level, the factors
that affect the linking accuracy.

For query-based applications such as web search and
DNS, the query keyword and its transform are usually
used as the IDs to link messages. If the same query
keyword is queried by different users multiple times in
the same time, this will potentially generate ambiguity
problem and the linked task tree may be incorrect and
shuffled. For example, in web search, popular search
keywords have some chance to be queried at close time.
On the other hand, the cache mechanism widely used in
the real life helps to solve the ambiguity problem as the
duplicated query may be held and not further processed.

6. Complexity of Message Linking

When a message goes into the Rake system, Rake
will first use signature matching to determine the type of
the message and then call either native or user provided
function to extract the IDs of the message. The previous
IDs can be stored in the hash table and hence linking
messages by IDs is quite obvious. While the complexity
really depends on the applications, generally the running
time is linear to the number of messages and the size of
messages. In our experience, the most time consuming
part is actually the signature matching part, which in
future can be optimized using techniques from intrusion
detection systems.

5. PRACTICAL ISSUES AND DIAGNOSIS

In this section, we discuss practical issues on software
evolution and trace collection, as well as how to diagnose
with task trees discovered.

1. Software Evolution

When the application evolves, some semantics in the
application may change. For example, we noticed the
quick update of Hadoop, which comes up a new version
nearly every month.

To Rake, the evolution of some applications is easy
to deal with. Often time the overall protocol and the
basic message format does not change much, although
the software implementation may update significantly.
For example, Hadoop took about one year to evolve from
v0.14.0 to v0.18.0, but there no major changes in its net-
work protocol. So the user function for parsing Hadoop
messages only need to change a couple of lines. On the
other side, X-Trace is not built in Hadoop’s development

7



so far. It is painful to patch X-Trace manually for the
new Hadoop version, even if the new changes are not
related to the network component at all. When we ask
the authors for the latest source of X-Trace on Hadoop,
we were told “[Hadoop] changes too quickly for us [X-
Trace] to be able to migrate the current patch forward.”.

2. Trace Collection

Generally, Rake takes the sniffed network traffic as the
input trace. While sniffing is already a very mature and
widely used technique, sniffing and collecting data from
a large network is a challenging problem.

Sniffers can be put on hosts or on the routers/switches.
Sniffing every host seems to be lots of work, but it is
actually very easy in some systems. For example, in our
evaluation of CoralCDN over PlanetLab, simple scripts
can start Tcpdump on every server and download all
sniffed data.

1) Partial Sniffer Deployment: For various reasons,
fully sniffing the whole network may be infeasible or too
costly. Generally, partial sniffer deployment degrades the
power of Rake by causing the diagnosis granularity to
be coarser. For example, in Hadoop system, the master
servers control all the slave nodes and generally the slave
nodes talk less. In this case, sniffing on the relatively few
master nodes can still cover most of the task tree and
Rake may only miss the latest layer of the tree involving
the communication between slave nodes.

2) Preprocessing Collection Data: Sniffing and send-
ing all data packet back to a central machine may not
be practical. Rake mainly use the IDs extracted from a
few packets, as most data packets are useless. Therefore,
simple preprocessing after sniffing, and sending back
only a summary of the packets is desirable. This way,
the network overhead introduced in order to collect traces
can be neglected. For example, in CoralCDN, we only
need to extract 20 bytes from one packet which is a small
portion of a large data package.

3) Encryption and Compression of Packets: Encryp-
tion and compression may prevent Rake from under-
standing the semantics of the communication. This is the
common problem of many security applications such as
deep packet inspection. While this is true, we would not
worry about it much due to the following reasons:

• Many popular distributed systems such as DNS sys-
tems, MSN and the search system do not encrypt or
compress their communication. The reasons for not
using encryption are diverse. For example, the data
communications need not be secure (e.g. DNS and
IRC), or the system is isolated from the external In-
ternet, and encryption adds additional overhead costs
(e.g. Search system, MSN core network).

• There may still be approaches to overcome the en-
cryption problem. For example, if the communication
is encrypted using IPSec, it is possible to interposition

between the application and the dynamic library of
IPSec to extract the raw data.

3. Diagnosis with Task trees

Diagnosing the large distributed systems is non-trivial
even if accurate task trees are at hand. Since diagnosis is
not the focus of this paper, we only describe some simple
diagnosis algorithms that are used in our evaluations.

1) Diagnosis Using Processing Time: In many time
sensitive applications such as web search, IRC and CDN,
the processing time may be a good indication of the
performance of the nodes. For example, if an index
server in a search system has an elevated processing time
for search queries on average, it is quite likely this server
has performance problems and needs detailed diagnosis,
such as CPU/disk load investigation.

When the messages in a task tree are linked together,
it is easy to calculate the time interval between linked
messages using the timestamp in the messages. These
time intervals can be viewed as the processing time.
Therefore, task trees are very helpful for such time
sensitive applications. In our evaluation on CoralCDN,
we use the processing time for diagnosis.

2) Diagnosis with User Knowledge: In parallel com-
puting systems such as Hadoop, it is not appropriate to
simply use the processing time to diagnose the system.
The normal interval between two linked messages can
be quite volatile, e.g., varying from seconds to minutes.
For such applications, it is challenging to find a single
diagnosis algorithm for all applications even if sophis-
ticated machine learning approaches are used. Instead
of struggling with the challenging diagnosis algorithm
design, we apply user knowledge in the Rake system to
make the diagnosis job much easier.

While users provide the semantics of the system,
the user can also provide the expected processing time
or maximum normal processing time as well. In Rake
language, for some time sensitive messages, the user
may use the “Diagnose” tag to specify the expected
maximum processing time (an example of Hadoop is
shown below). While generating task trees, Rake also
checks if the processing time of the messages is over
the maximum processing time or not. If it is true, Rake
generates warnings for the unexpectedly long processing
time. In the evaluation of Hadoop (See Section 6.4), this
simple diagnosis approach actually helps us identify the
Slow master node problem.
<Message name=” Hadoop H e a r t b e a t R e s p o n s e ”>

. . . . . .
<Diagnose>

<MaxProcessTime> 1 </ MaxProcessTime>
</ D iagnose>

< / Message>

6. EVALUATION

In this section, we first talk about our implementation
experience of Rake on different applications. Then we

8



describe the extensive experiments on some distributed
systems.

1. Implementation

We implemented Rake in C++ on the Linux platform.
The Rake framework requires about 3000 lines of code.
The XML configuration files for applications usually
have hundreds of lines. For Hadoop, the message parsing
and ID extracting rely on the dynamic library, which
are in implemented in around 2000 C++ lines. For
CoralCDN, DNS and IRC, usually less than 300 lines
are enough for user provided library.

1) Interface between Rake and User Defined Func-
tions: In our Rake implementation, we utilize the
libtool [1] to call the functions in the dynamic library
written by users. Users can write functions in any lan-
guage and compile it into standard Linux shared library.
Rake defines the two interfaces, one for determining the
type of the message and the other for extracting ID sets
(Pm or Fm). For example, the interface for message type
takes the packet payload as the input and then outputs
a boolean to tell if the message is of a particular type
or not. The XML configuration files specify the name of
the user library and the function names, and hence Rake
can dynamically load the library and call them.

2) Experience of Applying Rake to Applications:
Similar to X-Trace which needs programmers to instru-
ment the applications, users need to to instrument Rake
with certain semantics. Ideally the Rake users are the
application designer but this may not always be the case.
Next, we describe our experiences on applying Rake to
IRC, DNS, CoralCDN and Hadoop as non-designers, in
the following two aspects.

1) Task Trees Discovery: For network protocols
such as DNS and IRC, we find it is very convenient
to simply study the RFCs of them. The RFCs usually
clearly describer the task trees of the protocols and
defines the message format. The level of details of RFCs
is just what Rake needs. No software programming
details and focusing on network communication.

For CoralCDN and Hadoop which are not well doc-
umented, the semantics study is a little bit more trou-
blesome. For CoralCDN, we mainly rely on source code
reading to understand its potential task trees. But we only
focus on the network module of CoralCDN, ignoring
other modules such as cache management. On the other
hand, for Hadoop, because most packets are in plain text,
we find it is very helpful to learn the message flows from
the network traffic dump.

2) Task Trees Construction: In our real experience,
we find it is quite straightforward to find out the IDs used
to link messages. This may be due to the applications we
studied are mostly query or task driven applications. The
query target (e.g. query host name in DNS and URL
in CoralCDN) or its transform (e.g. hashed value) is

embedded in most messages of the task tree. For the task
based applications (such as Hadoop), there is a built-in
task ID which is contained in most of the messages in
the same task to differentiate concurrent jobs. Therefore,
finding the IDs to link messages becomes a simple job
of learning the packet format of the messages. The only
trick to apply is the ID inheritance when the query
target or task ID is not contained in some RPC response
messages.

2. Evaluation Methodology

We evaluated two large distributed systems to show
the feasibility and accuracy of our Rake: (i) CoralCDN
– Coral content distribution network, and (ii) Hadoop –
an open source distributed cluster computing platform.
Meanwhile, we also analyzed the accuracy of task tree
extraction of Rake on the web search system of a top
search provider. Similar accuracy analysis of the IRC
system is omitted but can be found in [25].

We compared our Rake algorithm with previous stud-
ies using the black-box approach WAP5 [21]. Since
WAP5 does not work for computation intensive applica-
tions such Hadoop, as the the gap between messages are
general very large and the time correlation fades quickly,
we mainly compare WAP5 with Rake in the evaluation
of CoralCDN. For Hadoop, we show how we can use
Rake to find out some design problems and performance
problems, which cannot be identified by Hadoop’s own
tools or logs.

3. Evaluation on CoralCDN

1) CoralCDN Background: CoralCDN is a decen-
tralized peer-to-peer web-content distribution network.
CoralCDN is built on top of Coral, a key/value index-
ing infrastructure which uses a distributed sloppy hash
table(DSHT [20]). Basically, the web user is redirected
by Coral DNS server to another Coral DNS or Coral
web server, and the Coral web server fetches the web
contents from the cache in the DSHT or from the original
source of the web contents. Figure 5 shows a detailed
example of execution path of messages in CoralCDN.
The numbers in the path represent the sequence number
of messages linked by Rake algorithm.

Client

Co r a l 1 +
 D ns

Co r a l 1 + 
W eb  1

Co r a l 1 + 
W eb  2

W eb

1 - D N S
2 -D N S

3  - H T T P

10  - H T T P

4

6

7

5

8 - H T T P

9 - H T T P

11

13
14

12

Fig. 5. Coral execution path from Rake.

9



Client Co r a l 1 Co r a l 2 Co r a l 1 Client

HTTP 
R e q u e s t D HT D HT

HTTP 
R e s p o n s e

(U R L ,  I P,  PO R T) (K E Y  I D  ,  M S G  I D  ) (M S G  I D  ) ( I P,  PO R T )

Fig. 6. Semantic information flow in CoralCDN System .

2) Semantics used in Diagnosis of CoralCDN: Fig-
ure 6 shows the semantic information flowing through
the coral system. The URL requested by client in HTTP
request serves as the intrinsic ID to link all the related
messages in a task tree. Coral hashes the URL requested
and converts it into a 20 byte sha1 hash ID called
KeyID. This KeyID serves as the ID (both Link ID and
Child ID) for all the later DHT communication, and it is
used to link the HTTP and DHT query messages. Each
pair of DHT query and response messages share a unique
MsgID, serving as a linking point.

3) Experiment Setup: We deployed CoralCDN on
PlanetLab, using the public CoralCDN source code [20].
In our current deployment, 25 PlanetLab nodes are
installed with Coral daemons and web server daemons.
However, because PlanetLab nodes are not always avail-
able and sometimes heavily overloaded, usually we have
about 18 Coral nodes in our experiments. One of our
university server acts as the DNS server, handling all
the customized DNS requests.

We replayed two different datasets of about half an
hour’s duration on CoralCDN. These two different data-
sets are:
• UrlSet1 – The sniffed network traffic of a major

university in China. We replayed a total of 21 GB
HTTP traces collected from university on coral CDN.

• UrlSet2 – The sanitized access log from [22]. The
logs are sanitized and each line contains information
of a HTTP connection. We replayed a total of about
20,000 HTTP connections.
4) Message Linking Accuracy: Due to the lack of

ground truth for CoralCDN task trees, we rely on the
CoralCDN logs to estimate the accuracy of task tree
extraction of both Rake and WAP5. CoralCDN writes
logs when some important events occur, e.g., receiving
a HTTP request, making a DHT query and starting
download from the real web servers. CoralCDN does
not log any DHT message at all, making it impossible
to diagnose CoralCDN solely using the logs.

By modifying the CoralCDN source code, we enhance
the CoralCDN logs so that we can link the events for the
same HTTP requests in the log into event trees. An event
tree is simpler than the corresponding message-level task
tree. Typically an event tree has four nodes, receiving
HTTP request, starting DHT query, start downloading
from real web server and sending the webpage to the
client. To evaluate the accuracy of Rake and WAP5,
we compare the tree structures from Rake and WAP5
with the event trees generated from logs. Basically, using
the timestamp and URLs in the HTTP request, we first

identify the event trees and their corresponding task trees
(from Rake or WAP5). Next, given an event tree and its
corresponding task tree, for each node in the event tree,
we check if we can find a corresponding node in the
task tree. For example, for the “starting DHT query”
message in an event tree, we check if there are DHT
query messages and response messages with the same
DHT ID in the task tree. If any node in the event tree is
missing a corresponding node in the task tree, the match
of the event tree and the task tree is false. Finally, we
count all the false cases and use the false rate to evaluate
the accuracy of task tree extraction for both Rake and
WAP5.

Figure 7 shows the false rate of Rake and WAP5.
Generally, Rake is very accurate even when the HTTP
request load is very high, e.g., 160 requests/second. The
higher request load causes the higher ambiguity, which
hence affect the accuracy of Rake. On the other hand,
WAP5 has very low accuracy, and the false rate is around
90%. Actually given certain high HTTP request load
(e.g. 40 requests/second), the messages of different task
trees interleave and time correlation is really not a good
way to link messages in task trees. This suggests that
WAP5 is better used in low load scenarios such as finding
performance bugs due to design or coding errors [21].

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 40  60  80  100  120  140  160

F
al

se
 r

at
e 

(%
)

Request rate (/s)

Rake
WAP5

Fig. 7. False rate of WAP5 vs Rake

5) Diagnosis Ability: We calculate the processing
time of each coral node using both algorithms, WAP5
and Rake. We take the difference of receiving and send-
ing time for each pair of linked messages as the process-
ing time. Since both sending and receiving timestamps
are local to the node, we do not have synchronization
problem. For both Rake and WAP5, we calculate the
mean processing time for the HTTP and DHT request
seen under the HTTP request tree. We compare only the
processing time of the linked messages so that we can
have fair comparison between WAP5 and Rake.

Originally, we run CoralCDN on multiple PlanetLab

10



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 p
ro

ce
ss

in
g 

tim
e 

(s
)

CPU load (%)

Rake
WAP5

Fig. 8. Processing time of WAP5 vs Rake.

nodes and log the CPU load of these nodes. We con-
jecture that the CPU load may correlate with the real
processing time, because naturally one may think a
busy machine should be slow. However, we find that
processing time calculated from neither Rake nor WAP5
correlate with the CPU load. One reason can be the
heterogeneity of PlanetLab nodes and load. Therefore,
we further conducted a controlled experiments on a
single Coral node installed in one of our own server
which we have full control on.

The controlled node runs Coral server daemon solely
at first. Then we use Lookbusy [13] to keep the CPU(s) at
the chosen utilization level. Figure 8 shows the process-
ing time calculated by Rake and WAP5 under different
CPU loads. As for Rake, we can see the processing
time increases significantly when the CPU load increases
from 10% to 30%, and then the line becomes quite flat.
This phenomenon is probably because Coral itself is
not a computational intensive program. The increase of
processing time may be mainly caused by the process
scheduling of the operating system. When the CPU
load increases while it is still low, the Coral program
needs more and more time to get back CPU. To make
CPU busier and busier, Lookbusy does not increase the
number of processes, but reduces the sleeping time of its
processes. Therefore, when the CPU utilization is high
(e.g. over 40%), Coral process should have high priority
and switch back to running status quickly and this is not
quite affected by the CPU load.

On the other hand, the processing time calculated by
WAP5 increases slowly and then drops a little bit as the
CPU load increases. And obviously, the processing time
from WAP5 is much smaller than that of Rake. WAP5
underestimate the processing time because it always
attempts to link the closest messages which might not be
related. Actually lots of unrelated control messages are
also linked in the HTTP request tree by WAP5. Since
these messages are close in time with other messages,
the overall processing time in WAP5 is lower than the
actual time.

Name 
No d e

1 - g e t F i l e I n f o
(F i l e n a m e )

2  - F i l e I n f o
(I P C  I D )
3  - g e t B l o c k L o c a t i o n s

(F i l e n a m e )
4  - B l o c k L o c a t i o n  

(I P C  I D )

5  - C o p y
(B l o c k  I D )

6  - D a t a
(T C P  F l a g )

D at a 
No d e

C l i en t

Fig. 9. Semantics of Hadoop DFS - Get operation.

4. Evaluation on Hadoop

In this section, we present an example to use Rake to
diagnose Hadoop [8].

1) Hadoop Background: Hadoop [8] is an open-
source implementation of Google’s MapReduce [15].
Hadoop enables distributed and parallel computation
by decomposing a massive job into smaller tasks and
a massive data-set into smaller partitions. Each task
processes a different partition of data in parallel on
different machines. Hadoop abstracts two types of tasks,
Map task and Reduce tasks. Hadoop uses the Hadoop
Distributed File System (HDFS), an implementation of
Google Filesystem, to share data amongst the distributed
tasks in the system. HDFS splits and stores files as fixed-
size blocks (except for the last block).

Hadoop has a master-slave architecture for both HDFS
and the job computing. Usually there are a couple of
master hosts and multiple slave hosts. For HDFS, a
NameNode (with a backup) manages the HDFS file
indexing and processes the file access from clients, and
the slave nodes act as DataNode to store the file contents.
For computing, the JobTracker schedules and manages
all of the tasks belonging to a running job and the
tasks are executed finally on the slave nodes, tracked
by TaskTrackers on each slave node. Note a Hadoop job
involves data file uploading and downloading as well
as long time computation on data. Usually there are a
large number of data packets for file transferring but
infrequent job status report messages. We find WAP5
generally cannot find meaningful task trees and hence
do not report WAP5’s diagnosis results in the following
evaluation.

Hadoop use log4j to log useful information. There
are different levels of log, such as ERROR, WARNING,
INFO and DEBUG. To save the log data size, DEBUG
level logs are not enabled by default, and Hadoop only
logs some significant events related to job progress. Even
in the DEBUG level, the log is far from the granularity
of packet level. Therefore, Hadoop logs are generally
data-mined in the event or state level (e.g. [23]).

2) Semantics used in Diagnosis of Hadoop: In this
section, we use two examples to show the semantics of
Hadoop utilized to link messages into task trees.

11



Name 
No d e

3 - C r e a t e  F i l e s
(F i l e n a m e )

4  - I P C  R e t u r n s
(I P C  I D )

2  - J o b I D
(J o b  I D )

1  - g e t N e w J o b I D

8  - A s s i g n  T a s k s
(T a s k  I D )

9  - F i n i s h  T a s k
(T a s k  I D )

D at a 
No d e

C l i en t

J o b  
S c h ed u l er

T as k  
S c h ed u l er

6  - F i n i s h  u p l o a d i n g
(S o c k e t )

5  - U p l o a d  b l o c k s
(i n o d e  I D )

1 0  - J o b  F i n i s h
(J o b  I D )

7  - s u b m i t J o b
(J o b  I D )

Fig. 10. Semantics of Hadoop - Grep operation.

1) Hadoop DFS - Get Operation: Figure 9 shows
the message flow as well as the semantics that can be
used to link the messages together. First, the client will
send an IPC call “getFileInfo” to the NameNode to get
the status of the files, e.g., existence, its owner and group
information. Note the file name of the target file can be
used as the ID to link following messages. File name
is not a unique ID in some cases, as different clients
may get the same file from DFS at the same time.
To further reduce the ambiguity, we also add socket
information (client IP and port) to make the ID to be
unique. The NameNode returns the status of the file
status via the IPC mechanism. As we described above,
IPC calls and returns are matched via the unique IPC
call IDs, and the IPC call ID is used to link messages
in this case. Next, the client uses a second IPC call
“getBlockLocations” to get the location of the blocks of
the target file, including the inode IDs and the hostname
of the datanodes storing the blocks. In the IPC call of
“getBlockLocations”, it also contains the file name which
is used to link with the previous “getFileInfo” IPC call.
Then the NameNode replies with the block information.
This time, the Link IDs generated are the inode IDs,
which should be unique in the DFS system. Last, the
client sends the “Copy” command to the DataNode
to download the file blocks, presenting the inode IDs.
When the TCP session of downloading ends (normally
or exceptionally), the last message (with TCP FIN or
RST flag) is linked to the beginning of the downloading.
In a word, to link the messages in the Get operation, the
polymorphic IDs are first the file name, then the IPC call
IDs and inode IDs, and finally the socket tuples.

2) Hadoop Job Running Operation: Running a job
in Hadoop is much more complex than simple DFS
operations. Actually, during the running of a job, many
files are created and read. Due to space limit, we only
briefly introduce the semantics Rake can utilize to link
the whole job running process, omitting many details.

Figure 10 shows the general steps of a job running.
Note each step in the graph may contain multiple sub-
steps and Rake does link the messages in these detailed

getFileInfo
R etu r n FileInfo

getFileInfo
R etu r n FileInfo

getB loc k L oc a tion

R etu r n B loc k  L oc a tion

N a m eN od e C lient D a ta N od e

R ea d B loc k

R ea d D one

4 T
im

es
 of

 
ge

tFi
leI

nfo

Fig. 11. Abused IPC calls in Hadoop.

sub-steps. First, the client requests a new job via the
“getNewJobID” IPC call (Step 1). In the reply from the
JobTracker, a JOB ID is returned, which is one of the
basic ID that Rake uses to link the whole task tree (Step
2). Then the client uploads a couple of files using DFS
operations, e.g., the user code and configuration files
(Steps 3∼6). Note the file names of these files all have
the fixed format and contain the JOB ID as part of the
file names. This is how Rake link the DFS uploading
operations into this task. After uploading the job files,
the client submits the job to the JobTracker, including
the JOB ID in the message. Then the JobTracker assigns
different Map and Reduce tasks to several different slave
nodes. In each assignment, there is a TASK ID, which
contains the JOB ID and some additional information,
such as the ID to differentiate this task to others of the
same job and the type of the task (Map or Reduce).
The JOB ID is used to link the assignments to the job
(e.g. linking Step 8 to step 7), and the longer TASK ID
is used to link the actions in the task (e.g. linking Step
9 to step 8).

3) Experiment Setup: We deployed the Hadoop
v0.18.1 on a small cluster of four machines in our
department as well as 10 PlanetLab hosts. One of our
machine acts as the master (both NameNode and Job-
Tracker) and the other nodes act as slaves (DataNode
and TaskTracker). We generate two candidate workloads,
which are commonly used to benchmark Hadoop:

• Reader: read different size of files from Hadoop DFS
• Grep: grep target strings from files in Hadoop DFS

In the controlled experiments, we manually inject
some failures to some nodes to cause the node to be
very slow, as did in CoralCDN experiments.

4) Evaluation Results:
1) DFS Reader: In this experiment, we use Rake to

inspect the Get operation of Hadoop DFS. In each single
run of the experiment, two Hadoop clients download the
same file from the DFS system simultaneously and we
conducted the experiments five times.

Accuracy: We manually checked message linking re-
sults of Rake and found that Rake can link the messages

12



GetNewJobID

UploadJobFile

SubmitJob

StartMapTask StartMapTask StartReduceTask

CompleteTaskCompleteTask

CommitTask

KillJob

heartbeat

heartbeatResponse

heartbeat

heartbeatResponse

…

0.994s

0.23s

0.71s

55.4s 60.6s

0.85s

101.5s

0.65s

20.6s

22.1s

Fig. 12. Running time of Hadoop steps.

without any error. As mentioned in Section 6.4.2, the
socket information helps to solve the ambiguity that
may potentially caused by downloading the same file
simultaneously.

Abused IPC Calls: Figure 11 shows the messages
linked by Rake. Surprisingly, it shows that the IPC
call “getFileInfo” is called four times with the same
parameter (i.e. the file name). By inspecting the source
code of Hadoop, we find that the problem indeed exists
and Hadoop redundantly call the same function four
times. The reason may lie in the convenience of the IPC
calls, and the programmer may not realize that he makes
some IPC calls. In this case, the IPC call “getFileInfo” is
called in function “getFileStatus”, which is further called
in other functions such as “isDirectory” or “isFile”. For
example, in Hadoop implementation, both “isDirectory”
and “isFile” are called to determine the file type and
hence cause two IPC calls. To the best of our knowledge,
we are the first one to find this problem.

2) Hadoop MapReduce Job - Grep: In these ex-
periments, we run the general Grep application on some
middle size files of about 200MB. The data file is
partitioned into three blocks and hence the job has three
Map tasks and one Reduce tasks. We specifically make
one of the nodes (either the master node or slave node)
to be slow and check if Rake can help on diagnosing the
slow nodes.

Figure 12 shows an example that Rake outputs the
general running time of each steps as well as some
substeps zoomed in. Note Hadoop itself has a web based
visualization which shows the running time of each Map
and Reduce task, which is in very coarse level.

Slow slave node: In this case, some Map or Reduce
task runs slowly. Both Rake and Hadoop web visualiza-
tion can clearly show the running time of the tasks, but
the running time cannot directly reflect the status of the

slave nodes, slow or fast. For example, a Map task can be
fast simply because it processes the a small block (e.g.the
last block of a data file). Further data-ming approaches
such as the distMatrix [23] can be used to diagnose more
accurately, but this is not our focus in this paper.

Slow master node: The problem is more interesting
when the master node is made slow. Unlike the slow
slave node case, Hadoop’s native web visualization can-
not really give implication on the problem, while Rake
can potentially show some symptoms of the slowness of
the master node.

When the master node is slow, the IPC calls may
become very slow and hence cause the whole job to be
slow. For example, in the experiment without injected
failures, a Map task takes about 20 seconds. In one
controlled experiment, we found all the three Map tasks
took about 50 seconds. However, we only injected fault
into the master node in the experiment, while the results
from Hadoop web tool might imply that the slave nodes
are slow. By looking into the time consumption in the
message layer via Rake, we can clearly see that when the
slave nodes reported the running status of the Map tasks
to the master node, master node took about 20 seconds to
reply back. The slave node reports the different stage of
the Map task to the master node,e.g. BEGINNING stage,
multiple RUNNING stage and SUCCEEDED stage. The
IPC calls are blocked due to the master’s slow response
and finally it seemed the Map task was finished slowly.
Rake can clearly identify the time between the IPC
calls and responses and hence is able to disclose the
problem in the master node. It is worth mentioning that
the Hadoop’s own logs may not be able to identify this
problem, because Hadoop does not log every heatbeat
and their response messages.

5. Web Search System

Web search is one of the most popular service. Take
the Google search platform for an example [12], it
usually has a tiered structure. The HTTP requests are
distributed to web servers and the search keywords are
extracted then. Next, the keyword is reformatted into
some canonical format and sent to the index servers. The
document IDs of the hit documents will be sent back and
then the target documents are fetched. Finally, the search
results are returned to the clients by the web servers.

1) Semantics for Linking Messages: Confirmed with
a researcher from a major Web search provider, we find
it is easy to link all the messages related to a search
query in the search system. At the beginning, the search
keyword and its canonical format serve as the IDs to
link the messages from the load balancer to the index
servers. The returned document IDs can be linked to
the search keyword in a query/response communication
between the web server and the index server. Next the
document ID can be used to link the messages of web

13



server to fetch documents. Note the cache feature in the
web search helps on the linking accuracy. In the search
of same keywords multiple times in a short period, only
the first one traverse the complex task tree, while the rest
get simple task trees due to cached search results.

2) Message Linking Accuracy Analysis: The inac-
curacy of message linking comes from the ambiguity
problem. If two identical search keywords come to the
same web server at close time (within ∆t), they may
cause mis-linking, for that they and their following
messages have the same IDs. After communicating a
major Web search provider, we choose ∆t as 180ms,
because a search query is usually finished within 60ms.

We obtain one peak hour of logs collected at the
frontend servers of a major Web search provider. For
privacy reasons, we cannot reveal more statistics about
the traces. Since the search query is transformed to be
a canonical format, and different but similar queries
may have the same canonical format, we cannot di-
rectly compare the search keywords for the ambiguity
rate. Unfortunately the transform function of all popular
search systems is unpublished. To bypass the problem,
we replay the search queries with Microsoft bing and
use the search results to determine if two queries share
the same canonical format or not. Two queries with the
same canonical format from the same “wget” command
return the same (or very similar) results.

The average percentage of similar/ambiguios request
is 4.5%. This implies that the average accuracy of the
system is about 95.5%. For debugging the system, we
need not to find the task tree of every request. Simply
ignoring the ambiguous requests and using the task tree
of 95.5% of request, we will be able to debug the system.
It is worth mentioning that the ambiguity is mainly
caused by user repeating their search keywords multiple
times in a short period.

7. CONCLUSIONS

In this paper, we propose Rake, a semantics assisted
gray-box tracing framework for distributed system di-
agnosis. The key idea is that in most cases, related
messages can be linked together by extracting some
IDs based on application semantics. Using several pop-
ular distributed systems, we demonstrate what semantics
Rake utilizes to link messages in a task tree accurately.
Meanwhile, to easily adopt Rake to new applications,
we designed the XML-based Rake language, which
allows clients to reuse the core rake components by only
submitting application semantics. For evaluation, we
deployed both CoralCDN and Hadoop, and conducted
controlled experiments to evaluate the message-linking
accuracy. We also demonstrated how Rake can help on
diagnosing performance problem in these two systems.
Meanwhile, accuracy analysis on the web search system

and IRC system also demonstrates the accuracy of Rake
in different systems.

REFERENCES

[1] Gnu libtool - the gnu portable library tool. http://www.gnu.
org/software/libtool.

[2] Hp openview. http://www.openview.hp.com/.
[3] Ibm tivoli. http://www.ibm.com/software/tivoli/.
[4] Microsoft operations manager. http://www.microsoft.

com/mom/.
[5] ACKERMAN, E. Yahoo’s hadoop software transforming the

way data is analyzed. http://www.siliconvalley.com/
news/ci_10897240?nclick_check=1.

[6] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS,
P., AND MUTHITACHAROEN, A. Performance debugging for
distributed systems of black boxes. In SOSP (Oct. 2003).

[7] ANANDKUMAR, A., BISDIKIAN, B., AND AGRAWAL, D. Track-
ing in a spaghetti bowl: Monitoring transactions using footprints.
In ACM SIGMETRICS (June 2008).

[8] APACHE. Hadoop. http://lucene.apache.org/
hadoop/.

[9] ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. In-
formation and control in gray-box systems. In SOSP (2001).

[10] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S.,
MALTZ, D. A., AND ZHANG, M. Towards highly reliable enter-
prise network services via inference of multi-level dependencies.
In ACM SIGCOMM (2007).

[11] BARHAM, P., DONNELLY, A., ISAACS, R., , AND MORTIER, R.
Using magpie for request extraction and workload modelling. In
OSDI (Dec. 2004).

[12] BARROSO, L. A., DEAN, J., AND HOLZLE, U. Web search for a
planet: The google cluster architecture. Micro, IEEE 23, 2 (2003),
22–28.

[13] CARRAWAY, D. Lookbusy. http://devin.com/
lookbusy/.

[14] CHEN, X., AND ET. AL. Automating network application depen-
dency discovery: Experiences, limitations, and new solutions. In
OSDI (2008).

[15] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data
processing on large clusters. In OSDI (2004).

[16] DREGER, H., AND ET. AL. Dynamic application-layer protocol
analysis for network intrusion detection. In USENIX Security
Symposium (2006).

[17] EASTLAKE, D., AND JONES, P. US Secure Hash Algorithm 1
(SHA1). RFC 3174, 2001.

[18] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND
STOICA, I. X-Trace: A pervasive network tracing framework. In
NSDI (2007).

[19] FOX, A., AND BREWER, E. Path-based failure and evolution
management. In NSDI (Apr. 2004).

[20] FREEDMAN, M. J., FREUDENTHAL, E., AND MAZIRES, D.
Democratizing content publication with coral. In NSDI (2004).

[21] REYNOLDS, P., WIENER, J. L., MOGUL, J. C., AGUILERA,
M. K., AND VAHDAT, A. WAP5: Black-box performance de-
bugging for wide-area systems. In WWW (May 2006).

[22] National lab of applied network research. ftp://ircache.
nlanr.net/Traces/.

[23] TAN, J., PAN, X., KAVULYA, S., GANDHI, R., AND

NARASIMHAN, P. SALSA: Analyzing logs as state machines.
In Usenix Workshop on the Analysis of System Logs (2008).

[24] YEMINI, S., KLIGER, S., MOZES, E., YEMINI, Y., AND OHSIE,
D. High speed and robust event correlation. In IEEE Communi-
cations Magazine (1996).

[25] ZHAO, Y., CAO, Y., GOYAL, A., CHEN, Y., AND ZHANG,
M. Rake: Semantics assisted network-based tracing framework.
Tech. Rep. NWU-EECS-09-14, University of Northwestern, Jun,
2009.

14


